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Abstract

As cyber-physical systems (CPS) are increasingly being integrated into many facets

of modern day life, attackers are gaining new vectors to launch their attacks on these

networks. Network administrators need better tools to help support secure networks

which can anticipate the attacks even when they are uncertain of an attacker’s tech-

niques. Hypergame theory is a method that models these cyber attack scenarios

where players can have different perceptions about the game being played. The nor-

mal form hypergame is capable of comparing different strategies a player can select to

improve their expected outcome based on their confidence in these perceptions. Cap-

turing perceptions improves the accuracy of the model and incorporates the effects of

a player’s misconceptions and deception. Using this additional information a network

administrator can formulate improved plans to better protect a CPS network. AFIT’s

Hypergame Analysis Tool (HAT) software can model these competitive scenarios in

a normal form hypergame and capture multiple perceptions of a player. HAT can

also scale the expected payoffs by the belief in being outguessed by the opponent, to

further determine best strategies. This investigation analyzes HAT’s ability to deter-

mine the best strategy for a network administrator defending a CPS. A new cyber

defense modeling framework (CDMF) is used to create an easy to understand model

for a cyber scenario. HAT is upgraded with the ability to calculate Nash equilibriums

(NE) using a mixed integer programming method (MIP). MIP simplifies alternating

NEs to analyze different strategies in HAT. HAT’s validated MIP implementation is

used to analyze cyber models and experiment on the Blotto game and CDMF model

by changing NEs and row players. These experiments validate the hypothesis that

analyzing hypergames in new and interesting ways results in new information and in-

iv



sight that can support a CPS network administrator in making better defense plans

against an unpredictable attacker.

v



Acknowledgements

I would like to thank my academic advisor Dr. Lamont for his tremendous per-

sistent help with this paper. Thanks to Dr. Kovach for his continued assistance in

this effort along with my committee members. I like to give a special thanks to Cap-

tain Ortiz for helping me stay focused. I like to thank my entire Umodu family for

everything they done to help. Thanks to my dad for his encouragement throughout

the process. Special thanks to my mom for constantly checking on me to make sure

I was on task and making sure I had everything I needed. I also like to thank God

for the ability to accomplish everything I have done and the amazing opportunity.

Kebin Umodu

vi



Table of Contents

Page

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Cyber Conflicts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Game Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Research Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Research Goal and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.6 Research Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.7 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

II. Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 Decision Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Extended Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Expected Utility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Game Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Extended Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Normal Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Pure Strategy Nash Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Mixed Strategy Nash Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Nash Equilibrium Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Complete Information Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Dominant Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Zero Sum Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Functional Utilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.3 Hypergame Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
History of Hypergame Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
HyperGame Normal Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.4 Cyber Warfare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Cyber-Physical Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.5 Modeling Cyber Systems via Game Theory . . . . . . . . . . . . . . . . . . . . . . . . 49
Linear Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Normal Strategic Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

vii



Page

Stackleberg Game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Signaling Game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Stochastic Game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Hypergames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.6 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

III. Methodology for Hypergame Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.2 Method of Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.3 HAT Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.4 Update Belief Contexts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.5 Update Nash Equilibrium Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.6 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

IV. Design, Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.2 Updated HAT Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Test Single Pure Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Test Single Mixed Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Test Multiple NEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.3 Cyber Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.4 Experimentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Blotto Game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
WSN CPS Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.5 Summary of Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

V. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.2 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Appendix A. Lemke-Howson Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Appendix B. Wireless Sensor Network Cyber Physical System
Game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Appendix C. MIP Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

viii



List of Figures

Figure Page

1 Decision Theory Extended Form. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Decision Theory Extended Form with Stochasticity. . . . . . . . . . . . . . . . . . 10

3 Game Theory Extended Form. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Basic Cyber-Physical System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5 Signal Game in Extensive Form. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6 Stochastic Game Flow Chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

7 Belief Context Do Not Sum to 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

8 Belief Context Sums to 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

9 Prisoner’s Dilemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

10 Deadlock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

11 Rock Paper Scissors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

12 Matching Pennies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

13 Battle of the Sexes: Pure Strategy 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

14 Battle of the Sexes: Pure Strategy 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

15 Battle of the Sexes: Mixed Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

16 Chicken: Pure Strategy 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

17 Chicken: Pure Strategy 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

18 Chicken: Mixed Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

19 Intrusion Detection Game in HAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

20 Sequential SCADA Game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

21 SCADA Game in HAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

22 Insider Game in HAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

ix



Figure Page

23 Blotto Game Strategy# 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

24 Blotto Game Strategy# 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

25 Blotto Game Strategy# 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

26 Blotto Game Strategy# 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

27 WSN CPS Model: Defender . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

28 WSN CPS Model: Defender . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

x



List of Tables

Table Page

1 Game Theory Normal Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Rock, Paper, Scissors Game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Solving Rock, Paper, Scissors Mixed Strategy . . . . . . . . . . . . . . . . . . . . . . . 16

4 Lemke-Howson Example Game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5 Nash Equilibrium Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6 Prisoner’s Dilemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

7 Hawk Dove Game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

8 Hypergame Normal Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

9 C0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

10 Rock, Paper, Scissors Hypergame Normal Form . . . . . . . . . . . . . . . . . . . . . 39

11 Rock, Paper, Scissors NEMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

12 Hyperstrategy MO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

13 Hyperstrategy WS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

14 Hyperstrategy PS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

15 Hyperstrategy with G Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

16 Linear Program Model Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

17 Normal Form Model Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

18 Normal Form Game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

19 Signal Game Model Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

20 Stochastic Game Model Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

21 Defense Cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

22 Attack Cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

xi



Table Page

23 CDMF Model Damage Caused By Specific Attack on
Specific Defense . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

24 WSN CPS Defender vs. Attacker Normal Form . . . . . . . . . . . . . . . . . . . . . 68

25 Defender and Insider Outcome Rankings . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

26 Hyperstrategies # 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

27 Hyperstrategies # 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

28 Hyperstrategies # 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

29 Hyperstrategies # 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

30 WSN CPS Model: Defender Hyperstrategies . . . . . . . . . . . . . . . . . . . . . . . . 94

31 WSN CPS Model: Attacker Hyperstrategies . . . . . . . . . . . . . . . . . . . . . . . . 96

32 Lemke-Howson Example Game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

xii



HYPERGAME ANALYSIS OF CYBER SYSTEMS

I. Introduction

This investigative effort expands on the ways hypergame analysis is conducted,

particularly in the field of cyber-physical systems. The purpose of this research is

to achieve better input for plan forging by a network defender. Hypergame analysis

is an extension of game theory that allows a planner to incorporate ideas of miscon-

ception and deception into a model. This makes it more realistic and provides more

representative information that can lead to more efficiency and greater payoffs when

applied in the real world. This research explores how the AFIT Hypergame Analysis

Tool (HAT) can be updated and utilized in new ways to find even more interesting

information that can benefit a planner. The following sections introduce the main

topics covered in this research, including cyber conflicts, game theory, the motivation

behind the research, the main problem, the research goal, and the thesis structure.

1.1 Cyber Conflicts

In today’s world the idea of cyber has permeated almost every aspect of our daily

lives. This has allowed for unprecedented speed, efficiency and ease of services and

communication in our modern world. Cyber technology has even found its ways into

things where one might have previously asked “why?”, such as cars, television sets,

watches, eye glasses, and even refrigerators. As the tendency to add the “smart” pre-

fix to more and more objects continues, steadily bringing everything into the “Internet

of things”, it becomes increasingly important to reconsider the security of connected

networks from attackers. This is because as more devices are connected to the Inter-

1



net the attack surface increases as well. Although cyber security experts have been

fighting to keep these networks protected via traditional and new methods, society

continually sees instances where these systems are being circumvented and people

are still falling victim to cyber attacks. One recent example of this was during the

2016 U.S presidential election where it was reported that Russian intelligence opera-

tives had infiltrated emails of a candidate’s party member [1]. The emails released to

the public as a result of this attack exposed potentially damaging details about the

internal activities within the political party and are believed to have swayed public

opinion in the election [2]. Incidents such as this are simply a reminder that the cyber

world is not as secure as society would like it to be and continuous efforts are needed

to combat cyber attacks. One way to improve cyber security is to better understand

cyber attacks. Cyber attacks can be seen as conflicts between a hostile entity and

the system they are trying to affect along with those that are trying to protect it. By

analyzing these conflicts, network defenders can gain better insight into how a hostile

entity acts against a system as well as how the system and its defender should react

to maximize system operability and minimize negative impacts.

1.2 Game Theory

A good way to analyze this conflict is through the use of game theory which

is a mathematical approach to modeling conflicts between players. The ideas of

game theory are known to be first formally recorded when mathematician Charles

Waldegrave wrote a letter to a colleague discussing the best strategy for a two player

card game known as “le Her” [3]. Charles discovered that an optimal strategy for

a player was not to stick to any single strategy but to bounce between different

strategies with a certain probability in what would come to be known as a mixed

strategy. After Charles Waldegrave’s insight into game theory, many others continued
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to utilize game theory concepts to explain economic and social issues as well as more

traditional game strategies such as chess. In 1928 Jon Von Neumann published a

paper that truly defined game theory as its own mathematical study and formalized

a lot of the concepts [4]. Since then game theory has continued to expand introducing

new ways to model various conflicts and interactions including those in the cyber

domain. In 2017 The former chair of the US House Intelligence Committee stated

that game theory was consistently used in his department when making decisions on

cyberattack policies [5]. Game theory’s ability to help determine how rational players

would interact in a given scenario have proven to be beneficial in understanding what

an attacker might do to a network. Once an attacker’s strategy is better understood,

a defender can effectively plan on how to go about mitigating these efforts.

1.3 Motivation

In order for a network defender to formalize a good plan on how to protect their

assets, they first must have good information. This information can come from mod-

eling a cyber scenario using game theory, but the information that is gained is limited

to the quality of the model itself. Therefore, in game theory the closer the model is

to reality while still being reasonable and understandable, the better the information

that can be garnered from it. As stated earlier traditional game theory was restricted

in what it could model as it focused on complete information games where each player

knew exactly what the other players’ strategies were. When it comes to engagements

in cyberspace however, the defender may not know the full capabilities of the attacker

and vice versa. This means, using a model that inaccurately captures the situation

can diminish the usefulness of the information gained and render that information

limited in application. Even worse, this information can lead to players making deci-

sions that result in sub-optimal outcomes. Many researchers expanded game theory
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to address these short comings. This led to the development of hypergame theory

which allows games of incomplete information to be modeled. In particular hyper-

game models are able to capture scenarios where players are not always fully aware of

each other’s available strategies. This leads to players possibly having a different out-

look on the game, which in turn, influences there chosen strategies. With hypergame

theory, cyber conflicts where a defender may not know all the attacker’s strategies

and vice versa, could be more accurately modeled. This new model could then lead

to better insight on how to properly plan for these situations in order to achieve the

highest payoff. Another benefit of hypergame theory is that the information gained

can help find strategies with better outcomes than ones found only using perfect

information game theory concepts.

1.4 Research Problem

Over the years, there has been a limited amount of research into hypergame theory.

It has been applied to many fields including military engagements [6], social issues

[7], and e-commerce [8] to name a few. More hypergame research has also been done

in the field of cyber [9][10][11] as of late which is promising to network defenders

seeking to gain an edge on their networks. However this area of research still pales

in comparison to the amount of cyber research done in more traditional game theory.

This can attributed to hypergame theory being relatively new. Another difficulty

that this kind of research is facing is the lack of well-established hypergame tools.

Normal game theory has well documented tools such as Gambit [12], which allows

games to be modeled in normal or extensive form and then solved, and a tool called

GAMUT [13], which can create random games fitting certain criteria. These tools

make it much easier to analyze game theory conflicts and draw conclusions. When

it comes to hypergames however there are only a few set of tools that have been
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developed, and they are not nearly as established. The tool HYPANT [14] was

created to model hypergames according to the model proposed by Wang [15] where

hypergames had different levels of perceptions. It was tested against classic games as

well as games developed in hypergame research and shown to provide accurate but

limited results. This software has also been utilized in a few other academic papers.

Another hypergame tool is the AFIT Hypergame Analysis Tool (HAT) which is similar

to Gambit as it models games in their normal form, but it can also model hypergames

in normal form. This capability makes it a strong candidate to become an integral

tool for hypergame analysis. HAT currently has basic functionality, but is still being

developed to flesh it out.

1.5 Research Goal and Objectives

The goal of this research is to further develop the field of hypergame theory,

specifically as it pertains to cyber systems by developing an improved modeling and

analysis environment for hypergame models. In particular the focus is on new ways

to analyze hypergames to gain more information for the decision maker and assist in

planning for cyber defense.

This research explores how different factors affect the analysis of a hypergame

model by looking at these models in new ways to glean new information that en-

hances a model’s ability to support the decision maker. This research has a three

main objectives. The first objective is to improve the HAT software functionality in

order to better analyze hypergame models. Currently the HAT software can only find

equilibriums using two methods, being Lemke-Howson [18] and support enumeration

[23]. Adding another method allows different equilibrium solutions to be found thus

enhancing the insight that the software can provide to a decision maker. The second

objective is to present a new and interesting cyber warfare model. This model in-
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corporates the idea of mission success and failure for the defender and the attacker.

The third objective is to analyze this and other cyber models in new ways. This

includes changing a game’s equilibrium strategy as well as exploring the model from

the perspective of both the defender and attacker. Although many models have been

created for cyber, only one other case has used hypergame normal form (HNF) to

look at the model from the attacker’s perspective to gain insight for the defender

[10]. Previous researchers using Vane’s HNF have not yet considered how different

hypergame strategies from are affected by changing the full game equilibrium strat-

egy, which this research investigates [35]. The hypothesis is that looking at different

equilibrium strategies in a hypergame and alternating the row player can uncover

useful information for a defender of cyber networks that can be used in planning.

1.6 Research Approach

The HAT software structure is studied to find areas of improvement as well as

understand how a new Nash equilibrium method can be implemented. Nash equi-

librium methods are researched to see which one would make a good addition into

HAT based on their unique properties and improvements over the existing methods.

The software is validated against classical games and established models that deal

with cyber defense. Existing game theory and hypergame theory models in the cyber

field are studied, and a new cyber model is developed that provides a benefit over the

current models. The new model is the analyzed using the improved HAT software

as well. The improved HAT software is used to run experiments on cyber models

to discover benefits from analyzing hypergames and interpreting the results in new

ways.
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1.7 Thesis Organization

This document begins with an introduction of the main topics to be discussed

in Chapter I. Chapter II provides more background information into game theory,

hypergame theory, cyber-physical systems and how they intersect. Chapter III dis-

cusses the specific methods and hypergame software improvements used to conduct

the research, and introduces a new model for the defense of a cyber-physical system.

Chapter IV validates the HAT software against classic games before being used to

research different cyber defense models including the model created in the previous

chapter. Chapter IV also contains the experiments and analysis of the new informa-

tion can be learned from the data. Chapter V concludes the document with the final

results of the experiments. It touches on contributions made to the field of hypergame

theory in regards to cyber defense, and ends with suggestions for future work.
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II. Background

Game theory allows for the analysis of games from a mathematical aspect which

enables the explanation of practical and not so practical outcomes. This chapter

discusses development of game theory, starting with decision theory and ending with

hypergame theory. Hypergame theory builds upon both game and decision theory.

Following this there is a section on cyber warfare which explores the realm of cyber-

physical systems (CPS) and their vulnerabilities. This leads into a survey of the

application of game theory and hypergame theory in the cyber defense arena, show-

casing its benefits and potential.

2.1 Decision Theory

Extended Form.

To understand hypergame theory there must be an understanding of game the-

ory which itself is best understood by initially discussing decision theory. Decision

theory is based on the idea that given a scenario where a decision has to be made, a

rational decision maker makes choices to achieve the best outcome. Stated another

way decision theory looks into how a decision maker can rationalize over a set of

possible actions to select the action or set of actions that would most likely give them

the highest payoff in the end. In order to rationalize over these decisions effectively

each possible outcome has to be given a value so different choices may be compared

to each other. This value of the outcome to the decision maker is called the utility

[16]. To better understand this, here is an example scenario where a kid has to decide

whether they want to have pizza for lunch or a hamburger. The kid is the decision

maker and must pick one of the two options which leads to one of the two outcomes.

The best decision is based on how much each outcome benefits the kid. Say the out-
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come with the kid having the hamburger would give the kid a utility of 10 while the

outcome with pizza would give the kid a utility of 8. This shows that the kid likes

both choices but is happier with a hamburger for lunch over pizza. Therefore, deci-

sion theory would rationalize that the kid would choose the hamburger to maximize

their utility. These scenarios in decision theory are typically represented with a tree

structure known as the extended form. At the root of the tree is the decision maker

node with the different actions that can be taken from that point branching off of it.

These actions take the decision maker to another state which also can have actions

that branch off of them or none at all, making it a terminal state. A terminal state

is a state where no more actions can be taken and are more commonly referred to as

leaf nodes to fit the tree motif. These leaf nodes are the only states that give a final

utility to the decision maker. Figure 1 shows the lunch scenario in its extended form.

Figure 1. Decision Theory Extended Form.

Expected Utility.

When describing game theory earlier, it was stated that the decision maker chooses

the action(s) that “most likely” get them the best utility. This was done purposefully
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to express how decision theory can be used to make the most rational choice even

when there is uncertainty. When there is uncertainty in a situation it means that

the outcome of a particular action is not guaranteed. Instead there are multiple

possible outcomes of the action, and each are given different probabilities with all of

them summing up to 1. In this case the decision maker is trying to maximize their

expected utility (EU) since they do not know for sure what utility they may receive.

Consider the earlier scenario where the kid has to choose between having pizza or

a hamburger for lunch, except this time the utility of their decision is affected on

whether they are going to have pizza or hamburgers for dinner. In this scenario the

kid would prefer to have a different type of food for each meal rather than the same

thing for lunch and dinner. For this example there is a 70% chance that the kid has

the same thing for dinner if he chooses to have pizza for lunch and a 40% chance the

kid has the same thing for dinner if the kid chooses to have a hamburgers for lunch.

This updated example is seen in Figure 2.

Figure 2. Decision Theory Extended Form with Stochasticity.

Now the choice of the decision maker is no longer as straightforward as picking the

biggest number, but the rational action is still that which maximizes their EU. The
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equation for EU is EU = Σn
i=1pixi where pi is the probability of the ith event and xi is

the utility of that event. To find the best decision for the kid’s lunch, the EU for each

decision is calculated by plugging the values into the equation. The EU for the pizza

is 5 ∗ 0.7 + 10 ∗ 0.3 = 6.5 and the EU for the hamburger is 4 ∗ 0.35 + 8 ∗ 0.65 = 6.6. In

this case the EU for eating a hamburger, 6.6, is slightly greater than the EU for eating

a pizza for lunch, 6.5. Therefore, the kid should still choose to have a hamburger for

lunch since the kid is less likely to have that same thing for dinner and therefore

receive a higher EU. This example demonstrates how decision theory is able to help

decision makers determine the best choice even in the absence of certainty. Now that

the basics of decision theory have been explained, it is time to describe game theory.

2.2 Game Theory

Extended Form.

Similar to decision theory, game theory helps in making decisions. The big dif-

ference is game theory deals with two or more decision makers and the interactions

of their strategies to determine the utilities achieved by all players. Scenarios in

game theory are known as games. A game is formally defined as having a finite set

of N players. Each player has a set, Si, of pure strategies {S1, S2, ..., Sn}. Each

player also has a set, vi of payoff functions {v1, v2, ..., vn}. Each payoff function as-

signs a value to each combination of selected strategies. Player i’s payoff function is

vi : S1 × S2 × ... × Sn → R [16]. This means player’s actions combine to produce

different values for the player. The Colonel Blotto game introduced by Émile Borel

in 1921 [17] is an example of a classic game in game theory. In this game two colonels

each have an equal finite number of troops and have to decide how to allocate their

troops across a set finite number of fronts. The colonel who has more units on a front

wins that front and which ever colonel wins the most fronts wins the entire game. Al-
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though the concept of the game is simple, the game provides interesting insights into

how players can mix strategies or even gain advantages over their opponents which

is an idea that is touched on later in Chapter IV. This section discusses the different

aspects of two-player games. Although game theory can be applied for 2 or more

players, traditionally 2-player games are analyzed. This reduces the complexity and

simplifies the analysis of the different strategies of the game. Games in game theory

are typically modeled in one of two ways. The form that is similar to the way decision

theory is modeled is the extensive or tree form. This form sees one player being at the

root node with their available actions branching off and the terminal nodes of the tree

holding the payoffs. The difference is that at each layer of the tree, the player who is

making the actions switches and the utilities displayed at the terminal nodes are for

all players involved. A simple two player game example of this format can be seen

in Figure 3. Player 1 is at the root of the tree and has actions available branching

off. These actions lead to one of Player 2’s decision nodes which have their available

actions branching off of them or they themselves are terminal nodes. At the terminal

nodes there are a pair of values. The first value is the utility for Player 1, and the

second value is the utility for Player 2.

Figure 3. Game Theory Extended Form.
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Figure 3 displays that if Player 1 wants a chance to maximize their utility with a

payoff of 6, they have to take action A. However, this is not guaranteed as Player 2

may select action A, which gives Player 1 a payoff of 3 instead. This payoff of 3 for

Player 1 is less than the guaranteed payoff of 4 if Player 1 selects Action B instead.

This demonstrates the strategies associated with game theory where a player must

take into account the decisions of other players when making their choice of action.

This example also relates back to John von Neumann’s proof of the min-max strategy

where a player makes decisions that minimize their maximum loss potential.

Normal Form.

Another way games can be modeled is through the normal form. In this form an

m × n matrix is formed. The m is the number actions available to Player 1 and n

is the number of actions available to Player 2. Each cell holds the utility values for

the actions corresponding with its row and column being played against each other.

Table 1 shows the game from Figure 3 transformed from extensive form into the

normal form.

The normal form allows the utilities for the different actions taken by the players

to be seen more easily. For example, if Player 1 took Action A and Player 2 took

Action B, Player 1 would receive a utility of 6 and Player 2 would receive a utility

of 2. Although the extended form of the game can be translated into a normal form

game, the extended form game is preferred when modeling games where players take

turns. The normal form game is preferred when modeling games where each players

actions are simultaneous.

Table 1. Game Theory Normal Form

Player 1 \Player 2 Action A Action B
Action A (3,5) (6,2)
Action B (4,3) (4,2)
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Pure Strategy Nash Equilibrium.

One of the main objectives in game theory is to find the actions that a player

should take to maximize their EU with regards to other players trying to do the same.

These actions place the game in a state of equilibrium and finding them is known as

solving the game. A state of equilibrium is achieved when all players involved have

no incentive to deviate from the actions they have selected. This state is referred to

as the Nash Equilibrium. Steven Tadelis defines the Nash equilibrium as a profile of

strategies for which each player is choosing a best response to the strategies of all other

players [16]. The term Nash equilibrium is named after John Nash who discovered

in his research that every finite normal form game has at least one equilibrium state

or Nash equilibrium with some games having more. Considering the example normal

form game in Table 1 the Nash equilibrium can be found by finding the actions that

each player can take where they have no incentive to deviate from that action given

that the other player maintains their strategy. Looking at the normal form game

in Table 1, it shows a Nash equilibrium is found when Player 1 selects Action B

and Player 2 selects Action A. The payoff for this strategy is 4 for Player 1 and 3

for Player 2. If Player 2 maintains Action A and Player 1 changes their strategy to

Action A, Player 1 achieves a new payoff of 3 which is less than what they had before.

Similarly, if Player 1 maintains Action B and Player 2 changes their strategy to Action

B, Player 2 achieve a new payoff of 2 which is less than what they had before. This

demonstrates that neither player has an incentive of changing their strategy to get a

better payoff.

Mixed Strategy Nash Equilibrium.

In game theory there exist two types of Nash equilibrium strategies. The Nash

equilibriums found previously are known as pure strategy Nash equilibriums. A pure
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strategy Nash equilibrium is when an equilibrium is achieved after each player takes

one particular action. However, there exists games where no matter what action is

selected by a particular player there is always an incentive for the other player to

change their strategy. An example of this can be seen in the classic Rock, Paper,

Scissors game in Table 2.

Whichever action each player chooses initially, at least one of the players has an

incentive to change their action given the other player keeps their chosen strategy.

Although it is true that this game does not have a pure strategy Nash equilibrium it

has what is known as a mixed strategy equilibrium. In a mixed strategy [16] Nash

equilibrium each players strategy consists of randomly choosing their available actions

with a certain probability. Equilibrium is achieved because players must randomize

their actions at a certain probability to account for the uncertainty of the other

players actions. When solving a mixed strategy equilibrium, the specific probability

of a players actions, over which they randomize, are found. In order to solve a mixed

strategy Nash equilibrium, it must be known which actions actually have a chance of

being selected as part of the mixed strategy. That means for any particular action it

must have a probability greater than 0 of being randomly selected. These actions that

meet this criterion are known as belonging to the support [16] of the particular mixed

strategy. Knowing the support in a mixed strategy allows the game to be solved.

Unfortunately the support is not always easily known simply by looking at the game

itself. When the support for a mixed strategy cannot be easily seen, as it is for larger

and more complex games, the mixed strategy must be calculated using mathematical

Table 2. Rock, Paper, Scissors Game

Player 1 \Player 2 Rock Paper Scissors
Rock (0, 0) (-1,1) (1, -1)
Paper (1, -1) (0,0) (-1,1)

Scissors (-1,1) (1, -1) (0,0)
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techniques such as linear programming. Rock, Paper Scissors is a relatively simple

game and using a little intuition about the game and its payoffs it can be assumed all

the actions for each player are included in the support. To finding the mixed strategy

for a game means finding the probabilities for the actions where the other player is

indifferent to their choice of actions. Therefore given the probability of Player 2s

mixed strategy, Player 1 is indifferent on their choice of mixed strategy.

This can be modeled by first representing the distribution over the actions as

variables p1 for Rock, p2 for Paper, p3 for Rock. Since the probabilities must sum to

1 it can be said that p3 = 1− p1 − p2, as is seen in Table 3. In order for Player 1 to

be indifferent over their actions they have to expect the same utility no matter which

action they choose assuming Player 2 is using a particular probability distribution

over their actions. To show this, set the EUs for every action for Player 1 equal to

each other. EU is calculated by the equation EUj = Σn
i=1probabilityi ∗utilityij where

i is the opponent action and j is the action for which the EU is being calculated.

The EUs for Player 1 actions are EURock = (0) ∗ (p1) + (−1) ∗ (p2) + (1)(1− p1− p2),

EUPaper = (0)∗(p1)+(−1)∗(p2)+(1)(1−p1−p2), and EUScissors = (0)∗(p1)+(−1)∗

(p2) + (1)(1 − p1 − p2). As stated earlier each player is indifferent to their actions

because they can expect the same utility. Mathematically this EURock = EUPaper =

EUScissors. The probabilities can be solved by plugging in the equations for the EUs

and solving for individual variables. The result of this is p1 = p2 = p3 = 1/3 which

is the probability distribution for Player 2’s mixed strategy. The same method is

Table 3. Solving Rock, Paper, Scissors Mixed Strategy

p1 p2 p3 = (1− p1)− p2

Player 1 \Player 2 Rock Paper Scissors
Rock (0, 0) (-1,1) (1, -1)
Paper (1, -1) (0,0) (-1,1)

Scissors (-1,1) (1, -1) (0,0)
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used to find the probability distribution for Player 1’s mixed strategy which turns

out to be 1/3 for all actions as well. This fits the natural intuition of the game where

no action has an advantage over the other when one player does not know what the

other player is doing. It is important to remember that this method worked due to

our assumption of every action being in the support turned out to be correct. This

is not the case for all games and for those games they can be solved more efficiently

with some of the more complex algorithms that have been developed over the years

such as the Lemke-Howson method [16].

Nash Equilibrium Algorithms.

The example in the previous section showed how to find the mixed strategy of a

two-player game. Unfortunately this method does not always work with more complex

games. This is because in order for this method to work the support of the mixed

strategies, which are the actions in a player’s mixed strategy which have a probability

greater than 0%, had to be assumed. In order to find the mixed strategy Nash

equilibrium for a game where the support is unknown different algorithms must be

used. Each of these algorithms that have been developed have their unique properties

and strengths.

Lemke-Howson Method.

One of the earliest and most popular algorithms used to find the mixed strategy

is the Lemke-Howson algorithm developed by C. E. Lemke and J. T. Howson Jr. in

1964 [18]. Their algorithm was capable of finding a mixed strategy Nash equilibrium

in two player non-degenerate games using linear programming techniques. Although

the algorithm itself is not very complex, the amount of time it takes to find an

equilibrium grows exponentially with the size of the problem. Although this is one
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of the algorithm’s weaknesses one if its greatest strengths is its guarantee to find

an answer if properly implemented. The following is an example of how the mixed

strategy for a game could be solved using the Lemke-Howson algorithm [19]. For this

example, consider the two player m× n game in Table 32.

The algorithm starts by generating two matrices for each player which are matrix

A and B corresponding to player A and B’s utilities respectively.

A =

∣∣∣∣∣∣∣∣∣∣
2 4 0

0 0 3

3 2 2

∣∣∣∣∣∣∣∣∣∣
B =

∣∣∣∣∣∣∣∣∣∣
3 2 0

2 4 2

0 0 4

∣∣∣∣∣∣∣∣∣∣
The mixed strategies found by this algorithm are in the form of a m sized vector,

x, for player A and a n sized vector, y, for player B. According to the algorithm the

constraints for a Nash equilibrium solution are Aiy ≤ 1 and xTBj ≤ 1. Non-negative

slack variables r and s are used to turn these inequalities into the equalities Ay+r = 1

and BTx + s = 1. Two tableaux are set up that solve for the slack variables as seen

in tableau A and tableau B.

r1 = 1− 2y4 − 4y5 (A1)

r2 = 1− 3y6 (A2)

r3 = 1− 3y4 − 2y5 − 2y6 (A3)

Table 4. Lemke-Howson Example Game

Player A \Player B 4 5 6
1 (2, 3) (4,2) (0, 0)
2 (0, 2) (0,4) (3,2)
3 (3,0) (2, 0) (2,4)
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s4 = 1− 3x1 − 2x2 (B1)

s5 = 1− 2x1 − 4x2 − 2x3 (B2)

s6 = 1− 4x3 (B3)

In this algorithm x and r are seen as pairs along with y and s, and labels refer to the

index of a variable solved for in an equality. For example the equality r1 = 1−2y4−4y5

provides the label 1 from the index of r. The goal of the algorithm is to start with

all the labels and then pivot the variables until all the labels are covered again by the

union of the two tableaux. For this example the labels are 1 through 6 and as stated

earlier the algorithm starts with all the labels. A pivot is performed by choosing a

random index to solve for which causes a label to be lost. The lost label becomes the

new index to solve for and this is repeated until all the labels are accounted for. For

example If the previous equality is solved for y4 it becomes y4 = 1
2
− r1

2
− 2y5. In this

equality, the label is now 4 and the label 1 is lost. When choosing which equality to

solve an index for the general rule is to choose the equality with a minimum value

for that index. If there is a tie than randomly pick one. To avoid unending loops,

if the tie is formed again break the tie differently. The first index to pivot can be

random, and this example solves for x1 in tableau B. The minimum value rule means

use equation B1. This creates the new tableau B‘.

x1 =
1

3
− 2

3
x2 −

1

3
s4 (B‘1)

s5 =
1

3
− 8

3
x2 − 2x3 +

2

3
s4 (B‘2)

s6 = 1− 4x3 (B‘3)
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After pivoting on x1 and plugging in the variable for the other equations, label 4

is lost since there is no longer an equation solving for a variable with an index of 4

which used to be s4. In order to get it back, pivot on y4 in tableau A because y and

s are pairs. The minimum value rule dictates that the A3 be used. This creates the

new tableau A‘.

r1 =
1

3
− 10

3
y5 +

2

3
y6 +

1

3
r3 (A‘1)

r2 = 1− 3y6 (A‘2)

y4 =
1

3
− 2

3
y5 −

2

3
y6 −

1

3
r3 (A‘3)

This process is repeated until all labels are accounted for with the union of both

tableau as seen in Table B“‘1 and A“‘1. See Appendix A for the full step-by-step

calculations.

x1 =
7

24
− 5

12
s4 +

1

8
s6 +

1

4
s5 (B“‘1)

x2 =
1

16
+

1

8
s4 −

3

16
s6 −

3

8
s5 (B“‘2)

x3 =
1

4
− 1− 4x3 (B“‘3)

y5 =
1

6
− 1

15
r2 +

1

10
r3 −

3

10
r1 (A“‘1)

y6 =
1

3
− 1

3
r2 (A“‘2)

y4 =
12

45
r2 −

6

15
r3 +

1

5
r1 (A“‘3)

20



Now the mixed strategy equilibrium probabilities can be found by solving for the

variables in the equation. This is done by assigning a 0 to all the slack variables. The

result of this can be seen in equation 9.

x1 = 7
24

(1)

x2 = 1
16

x3 = 1
4

y5 = 1
6

y6 = 1
3

y4 = 0

These values need to be normalized by dividing each value by the sum of its entire

vector. The final values are x1 = 0.482, x2 = 0.103, x3 = 0.413 for the x vector and

y4 = 0, y5 = 0.333, y6 = 0.667 for the y vector. These results give an equilibrium

mixed strategy for the game. Given the right set up this algorithm is guaranteed to

work on any non-degenerate two player game. If the game is degenerate, ties can form

during the algorithm between equalities with the same minimum index value. These

problems can still be solved using small perturbations to break these ties which can

be done in polynomial time. If the game involves more than one player than other

methods have to be used to find the mixed strategy. Also this method essentially

only finds one Nash equilibrium per run. In order to find all the mixed strategies

every possible pivot combination would need to be tested which can result in a lot

of computation time in large problems. Other methods may be able to find all the

Nash equilibriums more efficiently.
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Other Methods.

In 1987 two of researchers introduced the Simplical Subdivision method as another

way to find mixed strategy Nash equilibriums [20]. This method works by solving

the nonlinear complementarity problem (NLCP) defined over the product of unit

simplexes that form when calculating the Nash equilibrium in a non-cooperative game.

Similar to the idea of labeling found in the Lemke-Howson method, the algorithm finds

a completely labeled simplex in a simplical subdivision of a single properly labeled

unit simplex. The algorithm is setup by considering an N player game where nj + 1

is the number of pure strategies available to player j ∈ IN . The product of the

index sets Inj+1 is represented by K and a vector k = (k1, ..., kn) ∈ K represents

the pure strategy vector where player j plays pure strategy kj ∈ Inj+1. The loss

player j experiences when playing k is captured in the variable aj(k) where ∀k∀j,

k ∈ K, j ∈ IN , aj(k) > 0. The mixed strategy space for player j is represented by

Snj and the simplical product S = Sn1 × ...× SnN is the strategy space for the non-

cooperative game. The value of xjh where x ∈ S represents the probability player

j plays the pure strategy h ∈ Inj+1. The expected loss to player j if x is played

is stored in pj where pj(x) =
∑

k∈K a
j(k)

∏i=1
N xiki The expected loss to player j if

strategy h is played instead of xj when other the players’ strategies stay the same is

calculated by mj
h(x) =

∑
k∈Kjh

aj(k)
∏N

i=1,i 6=j xiki , where Kjh = {k ∈ K|kj = h}. An

equilibrium strategy x ∈ S is obtained when ∀j∀h, j ∈ IN ,h ∈ Inj+1 pj(x) 6 mj
h(x).

This formulation highlights a unique aspect of this algorithm which is its focus on

the potential loss a player would experience if they played a certain mixed strategy

against their opponent’s strategy. One of the other benefits of this method is that it

can be used to solve a game where there are more than 2 players.
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Enumeration of All Extreme Equilibria.

Another method used to find the Nash equilibrium in bi-matrix games is through

the enumeration of all extreme equilibria (EEE) [21], and like most Nash equilibrium

finding methods, it makes use of linear programming to calculate the optimal mixed

strategy for each player. Extreme equilibria are the vertices of the polytopes that are

formed from the best responses of one player to the given strategy of another player.

This algorithm enumerates all the vertices and checks to see if the mixed strategies

found at these extreme equilibria meet the optimality conditions to be considered a

Nash equilibrium. The first optimality condition that must be satisfied to consider a

pair of best response strategies (x̂, ŷ) a Nash equilibrium is x̂tAŷ = α̂ and x̂tBŷ = β̂.

This condition states that the values for α and β are equal to the payoffs for Player 1

and Player 2 respectively when they play their best response strategies. The second

condition that must be met is x̂t(1α̂−Aŷ) = 0 and (β̂1t − x̂B)ŷ = 0. This condition

states that the equilibrium is found only when a strategy is played with 0 probability

or it is the best response to the other player’s strategy. One of the benefits of this

algorithm is that it is able to find all the Nash equilibriums in a game. One of

the drawbacks is that it formulated only for two player games. The algorithm was

improved upon in [22] by using integer pivoting as opposed to floating point numbers

to increase precision and by improving the check for degenerate games to make the

algorithm run faster.

Enumeration of the Support.

Continuing on with the idea of enumeration, one of the simplest methods for

finding the Nash equilibrium is through the enumeration of the support [23]. This

algorithm enumerates all the possible supports for two players given that the support

sizes for each player’s strategy are the same size. For example if Player 1 had 3 pure
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strategies and Player 2 had 2 pure strategies the algorithm would search for Nash

equilibriums where both players have a support size of 1 and where both players have

a support size of 2. Looking for the equilibrium where both players have a support

size of 1 would involve the algorithm considering 6 different combinations of actions

to see if any of these combinations are an equilibrium. After all these combinations

are checked for an equilibrium, the algorithm searches strategies where both players

have a support size of 2. Since the support sizes have to be the same the algorithm

only goes up the size of the player with the least amount of actions. Given a support

size and a combination of actions in those supports, linear equations are solved using

simple LU decomposition and back substitution to determine the values for the mixed

strategy. Once the mixed strategies are determined they are checked to see if all the

values are positive as their cannot be any negative probability values. If the mixed

strategy passes that test than it is checked to see if the payoffs are maximized and

equal for the strategies in the support which is found via the equation Ay for Player

1 and xtB for Player 2. This algorithm is really easy to implement, but is limited to

only two player non-degenerate games. Another issue with the algorithm is that it

cannot find equilibrium strategies with unequal supports.

Global Newton Method.

The Global Newton Method (GNM) is another algorithm for finding the Nash

equilibrium in a normal form game [24]. Along with the linear algebra found in other

algorithms, this algorithm utilizes concepts of homotopy and vector calculus. The

algorithm works by using a game instance to develop a system of equations whose

zeros are to be computed. This system of equations is then deformed into another

system of equations that has a unique and much more easily computed solution. This

deformation is then reversed and unique solutions are found tracing back along the
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path to the original system of equations defining the original game. These solutions

are in turn interpreted into the equilibrium mixed strategies for the players. The

benefit of this method is that it can be used to find multiple equilibriums in one

run using the input vector that defines the ray for the path of the homotopy. The

algorithm is also capable of handling n-player games. One of the drawbacks however

is that it does not distinguish degenerate games so it is not guaranteed to find all

equilibriums in those instances.

Iterated Polymatrix Approximation.

The next method explored is known as iterated polymatrix approximation (IPA)

was developed in concert with the GNM as a way to improve its effectiveness although

it has been shown that IPA can stand on its own as well [25]. IPA works by first

constructing a polymatrix game based off the payoffs players receive for playing cer-

tain strategies against others. The algorithm is based off the property that a mixed

strategy is an equilibrium of an original game if and only if it is also an equilibrium

of the polymatrix game that approximates it. This algorithm also makes use of a

variant of the Lemke-Howson method to calculate an equilibrium. The main purpose

behind the development of this algorithm was to quickly find a equilibrium to provide

a starting point to search for further equilibriums using the GNM. This is because

although it is faster than the GNM, it can only find one Nash equilibrium per run and

it also theoretically less reliable with a higher likelihood to stall as compared to the

GNM. Despite these setbacks it is still offered as a way to calculate Nash equilibriums

in software such as Gambit.
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Lyapunov Function.

A unique method to find Nash equilibrium in n-player games was developed using

a Lyapunov function [26]. This method finds a single Nash equilibrium by defining

the game in terms of a Lyapunov function and then, similar to other linear programs,

minimizing the objective function subject to constraints on the probabilities of the

strategies. Research has shown that the algorithm is slower compared to other algo-

rithms such as the Lemke-Howson method. This is a result of the algorithm being

vulnerable to finding local minimums in its search that do not actually result in a

Nash equilibrium. Therefore the algorithm could take longer if its starting point is

surrounded by local minimums, but this also means that the algorithm could perform

potentially well if the starting point for the search is close to a Nash equilibrium. The

major strength of this algorithm is that it is capable of finding Nash equilibriums for

n-players.

Linear Complementarity Problem.

Sometimes Nash equilibriums must be found for games are in the extensive form.

With the algorithms mentioned so far, in order to find the Nash equilibrium of this

kind of game it would first have to be converted to a normal form game. The problem

with this is that many times this conversion is costly and can cause the game to grow

much larger. This is why methods to solve games in their current extensive form were

developed. One such method utilizes the idea of linear complementarity problems

(LCP) to find the Nash equilibrium efficiently [27]. This method works by employing

Lemke’s algorithm on solving LCPs in general [28]. First the extensive form game is

interpreted into its sequence form. This is done by taking every leaf node in the game

to define a sequence of choices that result in a particular payoff. From here the goal

is to find the realization plan which represents the probabilities a player would select
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a certain sequence as a best response to another player. Once the game is defined in

sequence form Lemke’s method is used to solve the LCP. This method is proven to

be exponentially more efficient at computing extensive form games in their current

state than first converting to normal form. This algorithm can also be used to solve

normal form games as well. This method is also capable of handling degenerate cases

using lexicographic degeneracy resolution similar to the Lemke-Howson method, but

a drawback is that it is restricted to games of two players.

Tracing Logit.

Another method that uses the idea of homotopy to find the Nash equilibrium is

the tracing logit method [29]. This method works by considering quantal response

equilibriums (QRE) for n-player games. A QRE is an equilibrium where the player

takes into account some form of error when computing their best response. This error

is calculated based on a joint distribution. This causes a player to pick a strategy

that may deviate from the Nash equilibrium, but may pay off in practice for repeated

games. When that error is chosen independently from an extreme value distribution a

logit equilibrium can be found. In order to find the Nash equilibrium a branch of the

logit equilibrium correspondence is traced out. This method is useful for calculating

n-player games efficiently and makes heavy use of linear algebra for its calculations.

PNS.

Many of the methods mentioned so far approach the problem from different math-

ematical standpoints that can be seen as fairly involved. The issue with this is that

these mathematical algorithms although complete in their ability to find a solution

can lead to exponential computation times when solving larger problems. This was

a large motivation for the development of the simple search PNS algorithm named
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for the its authors Ryan Porter, Eugene Nudelman and Yoav Shoham [30]. The PNS

algorithm approaches the problem of finding a Nash Equilibrium by searching within

the solution space guided by simple heuristics. First the algorithm orders possible so-

lutions by the support sizes by smallest to biggest. Then the each support is checked

to see if a dominant strategy exists given the other players’ actions. If this is the case

then the solution cannot possibly be a Nash Equilibrium and the next set of supports

is checked. If the supports do not have dominated strategies than the solution is

checked for feasibility. The feasibility check attempts to solve a linear equation to

find the mixed strategy values and see if they are in fact a Nash equilibrium. This

method proved to be much faster than Lemke-Howson at finding Nash equilibriums

across many game instantiations. The authors also developed a n-player version of

the PNS algorithm using recursive backtracking and iterated removal of strictly dom-

inated strategies which demonstrated a significant computation time speed up when

compared to GNM. Both versions of the algorithm were also able to find solutions

to certain large problems where their counterparts were unable. Other important

aspects of this algorithm is that it was developed to find a single sample equilibrium

and due to the nature of its search, the algorithm finds solutions with smaller sized

supports.

Mixed Integer Programming.

The last algorithm discussed is the mixed integer programming algorithm (MIP)

[31]. This algorithm works on 2-player normal form games and similar to the heuris-

tics in the PNS algorithm it searches for solutions with characteristics associated

with a Nash equilibrium. MIP introduces a new characteristic known as regret of a

pure strategy. The regret of a pure strategy is the difference between the utility a

player would receive when playing an optimal strategy given the other player’s mixed
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strategy versus playing that pure strategy. MIP works on the principle that in a

Nash equilibrium all strategies are either played with 0 probability or played with 0

regret. In this method each player i ∈ 0, 1 has strategies si ∈ Si. The utility of a

strategy is represented as ui(si, s1−i) where s1−i is the other player’s chosen strategy

and ui is the utility function that returns a value. The probability a certain strategy

is played is represented as psi . The MIP method uses a binary variable bsi that is set

to 1 if a strategy si is played with the probability psi = 0 and bsi is set to 0 if the

strategy is indeed in the support of the strategy. However if bsi = 0 than strategy

si must be played with a positive probability and 0 regret. For each player there is

a variable ui that represents the highest possible EU that a player can achieve given

another player’s mixed strategy. Meanwhile the variable usi represents the EU when

a player plays a specific strategy against the other player’s mixed strategy. Know-

ing the ui and the usi allows the regret rsi to be calculated for a specific strategy.

Also there is a constant Ui for both players that indicates the maximum difference

between two utilities a player can achieve in a game. Mathematically this is rep-

resented as Ui = maxshi ,sli∈Si,sh1−i,s
l
1−i∈S1−i

ui(s
h
i , s

h
1−i) − ui(sli, sl1−i). In order to find a

Nash equilibrium the values for the variables psi , ui, usi ,rsi , bsi must be found under

the constraints seen in Equation 2.

(∀i)
∑
si∈Si

psi = 1

(∀i)(∀si ∈ Si) usi =
∑

s1−i∈S1−i

ps1−i
ui(si, s1−i)

(∀i)(∀si ∈ Si) ui ≥ usi

(∀i)(∀si ∈ Si) rsi = ui − usi

(∀i)(∀si ∈ Si) psi ≤ 1− bsi

(∀i)(∀si ∈ Si) rsi ≤ Uibsi

(2)
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If all the constraints are met than the mixed strategy is a Nash equilibrium so-

lution. One of the unique aspects of this algorithm is that an objective function can

be added to the linear program to find an optimal Nash equilibrium based on the

objective. The authors of this method also presented three additional ways the idea

of regret could be used with different objective functions and constraints in order

to turn MIP into an anytime algorithm. This means, the algorithm could be halted

at anytime to return a ε-equilibrium solution, which is a solution that is close to

equilibrium. MIP was shown to be faster than the Lemke-Howson method but slower

than the PNS method on certain instances. However its unique ability to find optimal

Nash equilibriums makes it a noteworthy algorithm. Table 5 is a quick reference chart

of all the methods discussed in this section.

Table 5. Nash Equilibrium Algorithms

Algorithm #players #equilibriums per run

Lemke-Howson 2 1

Simplical Subdivision N 1

Extreme Equilibria Enumeration (EEE) 2 All

Enumeration of the Support 2 Multiple

Global Newton Method (GNM) N Multiple

Iterated Polymatrix Approximation (IPA) N 1

Minimizing the Lyapunov Function N 1(not guaranteed)

Solving Linear Complementarity Problem 2 1

Tracing Logit N Multiple

Simple Search Method(PNS) N 1

Mixed Integer Programming (MIP) 2 Multiple
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Complete Information Games.

Game theory is a very rich field and there are many topics that can be discussed

in more depth. Previous sections touched on one of the more important topics which

is finding the equilibrium in a game, but there are a few other facets of game theory

that are also worth more attention. First is the topic of games that have complete

information. In a complete information game all the information about the game is

known. This means, all the players and their possible actions are known along with

all the possible results of the game and what actions guarantee those results. Also,

the utilities each player receives from those results are known as well. Games are

also broken down into perfect information games and imperfect information games.

A perfect information game means that at any point in the game a player knows

where they are in the game prior to their own action, meaning they know the moves

that have been made before them and the result of that move, when the game is

viewed in its extensive form. In an imperfect game the player may not know the

action that the other player has chosen, or what the result of that action was, and

therefore does not know what the result of their action is [32]. The game Rock, Paper,

Scissors is an example of an imperfect complete information game, because due to

the simultaneous actions taken by each player, neither player really knows what the

results of their chosen action are going to be. This is more easily seen when the game

is moved to its extensive form where the last player to move is unaware of what the

other player has done by definition of the game. Games that are sequential in nature

and thus normally represented by the extensive form have a chance to be perfect

complete information games.
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Dominant Strategies.

Another topic of game theory to discuss is the idea of dominant strategies. A

dominant strategy is a pure strategy where no matter what the strategy of the other

players, the dominant strategy is the best response. To help illustrate this point, look

at one of the most popular games in game theory known as the Prisoners Dilemma.

The scenario for this game is two partners in crime have to decide whether to tell

on the other for a reduced sentence while subjecting their partner to more time or

choose not tell on their partner and do more time than the reduced sentence. Table

6 shows the game modeled in normal form.

Table 6. Prisoner’s Dilemma

Prisoner 1 \Prisoner 2 Dont Tell Tell
Dont Tell (-3, -3) (-6, -2)

Tell (-2, -6) (-5, -5)

The table shows that if the prisoners work together they can each only get 3 years

in prison which is only 1 more than if they had told on their partner. Therefore, it

is beneficial to both prisoners if they cooperated and both did not tell on each other.

The problem is that both players have dominant strategies that stop them from

working together. From Player 1s point of view the strategy of telling dominates the

other choice because no matter what Player 2 chooses, Player 1 always get a higher

pay off by telling. The same goes for Player 2s dominant strategy. Unfortunately, by

each player rationally playing their dominant strategy, the result is both Player 1 and

Player 2 choose to tell and get 5 years in prison when they could have only gotten 3

years if they worked together and did not tell. The dilemma of both prisoners telling

on each other demonstrates a dominant strategy equilibrium.
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Zero Sum Games.

Another key concept of game theory is the zero sum game. In a two-player zero

sum game every combination of actions from players involved has utilities that sum

to zero. Rock, Paper Scissors is an example of a zero sum game because games result

in either one player winning and the other losing or the game results in a tie. These

games have special properties, which allow them to be solved more efficiently than

other games. Also due to the game being zero sum sometimes when modeling these

games the utility is displayed with only one number. This number usually represents

the utility of the first player/row player. The other players utility is simply the

negation of that.

Functional Utilities.

The last game theory topic to touch on is the idea of functional utilities. Some

games have actual functions for a utility instead of a value. For these games the

equilibrium may change as the evaluation of the function changes with the value of

the variables used in those functions. To solve the game, the inflection points need

to be found which are the values of the variable at which the equilibrium may change

[33]. Figure 7 show the Hawk Dove game where two birds are fighting over food. The

utilities represent the payoff expected when certain birds fight against each other.

The variable V represents the value of the food and variable C represents the cost of

the food. If the cost of the food is less than the food then the game contains two pure

strategies and a mixed strategy equilibrium state. However if the cost of the food

exceeds the value than the game turns into a variation of the Prisoner’s Dilemma

game, and the birds end up fighting over the food and achieve a suboptimal outcome.
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Table 7. Hawk Dove Game

Hawk Dove

Hawk (V−C)
2

, (V−C)
2

V,0
Dove 0,V V/2,V/2

2.3 Hypergame Theory

History of Hypergame Theory.

Over the years more research has gone into game theory, applying it to real world

scenarios to understand the interactions between the players in the game and the

outcomes. However, there are certain scenarios that game theory has had trouble

modeling which are games of incomplete information. To address this inability re-

searcher John Harsanyi developed a model for an incomplete information game [16]

. This model was able to analyze games where a player may be unaware of the type

of opponents they are facing and their type affects the payoffs. These kind of games

became formally known as Bayesian games. Although these kind of games are able to

explore scenarios that game theory could not support prior, there were still common

real world games that Bayesian games did not address. This is why researcher Peter

Bennet went on to establish the concept of hypergame theory [34]. Hypergame theory

aims to model games where players may have different perceptions of the game and

the other player’s may or may not be aware of these perceptions. This allows for each

player to have a different idea of what game they are playing. With hypergame the-

ory, it is now possible to think about games where players are attempting to deceive

their opponents about what their possible strategies are. The benefits of this model

can be seen in the classic real world example of the Fall of France [6]. In this example

France and Germany are fighting during WWII and Germany was on the offensive.

France believed that Germany’s options were to attack along the Maginot Line, which

was heavily fortified, or attack from the north. Believing that Germany would not
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attempt to attack the fortified Maginot Line, France placed emphasis on defending

the north. France also positioned troops to respond to an attack on the Maginot Line

if necessary. From France’s perspective these seemed like the only feasible attack

options for Germany. Germany initially planned to attack the north and use superior

fighting to win the battle, but there was fear that this would result in a stalemate or a

very costly victory. After some consideration Germany decided to focus on an attack

plan through the Ardennes Mountains where France would not expect it. France

disregarded this option because the mountainous terrain was considered too harsh for

German tanks, but German officers determined their tanks were up to the task. It is

also important to note that France got a hold of Germany’s old plans thus strengthen-

ing their confidence in their planned strategy. Germany followed through with their

new attack plan and claimed a decisive victory over the ill-prepared France. Germany

set up a deceptive advance using the options that France expected and then launched

a surprise attack from the option that France did not expect. The gamble paid off for

Germany. Although Germany did not explicitly use a hypergame approach to model

the battle and pick the best strategy, this shows how useful a hypergame model can

be in modeling these situations where normal game theory falls short.

After Bennet introduced the hypergame theory there have been a few proposed

models on how to capture the idea formally. The two most prominent models are the

levels of perception model and then the hypergame normal form (HNF) model. In

the levels of perception model there are different levels to the way a game is seen from

each players point of view which is represented by HL
i . L is the level of the hypergame

and i is the player that the perception belongs to. The first level, H0
i , represents the

original perception of the game being played just as in normal game theory model.

At this level perception of the game is not taken into account. The next level is

H1
i , representing each player’s current view of the game. At this point each player
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is possibly playing a different game although each player is not aware of the other

players perception. The next level is H2
i , and it is used to represent what a player

believes another players view of the game is. This is where misconception comes

into play because a certain player can be led to perceive something about another

player that is untrue. Beyond this is H3
i , which represents what a player believes

another player is thinking about their perception of the game which introduces even

more possibilities of misperception. These levels of perception could continue on but

the author acknowledges that real world scenarios usually only get to this point so

looking at further levels would not provide anything beyond mathematical significance

[15]. This model allows the concept of incomplete information to be captured as a

player can perceive a game of different options, strategies, preferences, higher order

expectations and even players. However, the visualization of this model was a slight

departure from the well-established extensive and normal form game models. This

led to continued research into the idea of capturing misperceptions and deception

in games of incomplete information, and brought on the development of the HNF

model by Russel Vane [35]. Russel Vane understood that the real world is more likely

to contain games with incomplete information and that basic game theory could

not account for. He sought to create a game model that would allow a planner to

anticipate being unsure of the other player’s strategies and assess the risk associated

with making decisions based off their belief of the opponent.

HyperGame Normal Form.

The HNF created by Vane was developed only for two players although Vane

states that it can be expanded for more players. Table 8 holds a template for the

HNF.
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Table 8. Hypergame Normal Form

CΣ S1 S2 S3 ... Sn
P(K−1) C(K−1) ck1 ck2 ck3 ... ckn

... ... ... ... ... ... ...
P1 C1 c11 c12 c13 ... c1n

P0 C0 c01 c02 c03 ... c0n

R(K−1) ... R1 R0=full game row\col col 1 col 2 col 3 ... col n
rk1 ... r11 r01 row 1 u11 u12 u13 ... u1n

rk1 ... r12 r02 row 2 u21 u22 u23 ... u2n

... ... ... ... ... ... ... ... ... ...
rkm ... r1m r0m row m um1 um2 um3 ... umn

The model has been color coded to easily identify the different regions. Before

describing the different sections of the model it is important to note that the model

is created from the view of the planner which is always the row player. In saying this

the model works to help the row player make a decision while anticipating uncertainty

in the column players strategy and assessing the risk of making certain decisions in

this uncertainty. In the green/bottom right region of the model, is the basic two

player game theory normal form model. The m strategies of the row player are

placed against the n strategies of the column player. The utilities for each player

when certain strategies are played are also recorded here as normal. For example,

if the row player chose strategy row 2 and the column player chose col 1 the utility

for each player would be found in the box u21. This is where the similarities to

standard game theory normal form end as the other sections are unique to HNF. The

next section to look at is the orange/upper right region of the model. This section

captures the column mixed strategies (CMS). Similarly the blue/bottom left region

captures the row mixed strategies (RMS). Each of the k rows, labeled Cstrategy#,

contain a mixed strategy of the column player with the values in each row summing

to 1. This can be represented mathematically as Σn
j=1ckj = 1. Each same numbered

CMS, Cstrategy#, corresponds to the same numbered RMS, Rstrategy#. The first CMS,
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C0, always contains the Nash equilibrium mixed strategy (NEMS) of the full game

for the column player as seen in Table 9

For example, c0strategy# would contain the probability that the column player

should use the corresponding col (strategy #) strategy according to the calculated

NEMS. CMS C0’s corresponding RMS, R0, contains the probability values of its

strategies according to the full game NEMS as well. Just like in the CMS, the

RMS components must sum to 1 which mathematically means Σm
i=1rki = 1. There

is an implicit and explicit way to determine the other CMS, Ck where k 6= 0. For

the implicit CMS the row player believes that the column player is playing a u × v

subgame of the full m × n game where 1 ≤ u < m and 1 ≤ v < n. When this

is the case a ‘-’ is placed in the location of the CMS’s strategy that is not being

considered and same goes for the RMS. After that the NEMS is calculated for the

subgame and the probability values are placed in the strategies still being considered.

The explicit CMS is found when the row player believes the column player is playing

their strategies at pre-determined probabilities. For this CMS, values of 0 are entered

for strategies that are played with a 0 probability and also the corresponding RMS

contains only ‘-’since the CMS is not guaranteed to be at NEMS. The top row of the

CMS section is labeled CΣ. Here the mixed strategy of the entire games is recorded.

This is where the yellow/top left corner of the model comes into play. This section

is known as the belief context and each value Pk represents the percentage the row

player believes the column player is playing CMS Ck. For example, if the row player

believes that the column player is 80% likely to be playing the full game then P0=0.8.

The sum of all the belief contexts must also sum to 1, so this condition must hold,

ΣK−1
k=0 Pk=1. In order to calculate CΣ, multiply each strategy in each CMS by its belief

Table 9. C0

C0 c01 c02 c03 ... c0n
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context associated with that CMS and then that value is summed together with the

like strategies across all the CMS to get the cumulative CMS of the hypergame. The

equation for this is Sj = ΣK−1
k=0 ckj . Once again the cumulative CMS, CΣ, sums to 1 so

that Σn
j=1Sn = 1. Table 10 puts the game of Rock, Paper, Scissors into a hypergame

to demonstrate these concepts.

It is seen the strategies and utilities are the same as they were in the standard

game theory normal form. Also the NEMS for the full game is contained in row C0

and column R0. The CMS for C1 represents an implicit subgame. In this subgame the

row player believes the column player is playing a game where they are not allowed to

play scissors, for whatever reason. This is represented by the ‘’ in the scissor strategy

for the C1 CMS. Since it is an implicit CMS the row player is able to calculate their

NEMS strategy for that game as well which is in the column R1. The benefit of this

observation is that the Row player may be able to trick the column player into thinking

that certain options are unavailable which could pay off for the row player. Although

this may be hard to do in Rock, Paper, Scissors the benefits can be easily seen in a

warfare scenario where an opponent might make certain strategies seem unavailable

to their opponent like in the Fall of France. The CMS for C2 is an explicit strategy

and represents the situation where the row player believes the column player only

chooses to play the Rock strategy even though the column player knows the other

strategies are available. The row player does not record a RMS in this situation which

Table 10. Rock, Paper, Scissors Hypergame Normal Form

CΣ 0.533 0.3 0.167
.3 C2 1 0 0

0.2 C1 1/3 2/3 -
0.5 C0 1/3 1/3 1/3

R2 R1 R0=full game row\col Rock Paper Scissors
− 0 1/3 Rock (0, 0) (-1,1) (1, -1)
− 2/3 1/3 Paper (1, -1) (0,0) (-1,1)
− 1/3 1/3 Scissors (-1,1) (1, -1) (0,0)
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can be seen by ‘-’s in column R2. The belief contexts show that the row player has

50% belief the column player is playing the full game, 20% belief the subgame, C1,

is being played and 30% belief the explicit game, C3, is being played. The values for

the cumulative mixed strategies are

S1 = 1/3 ∗ 0.5 + 1/3 ∗ 0.2 + 1 ∗ 0.3 = 0.533

S2 = 1/3 ∗ 0.5 + 2/3 ∗ 0.2 + 0 ∗ 0.3 = 0.3

S3 = 1/3 ∗ 0.5 + 0 ∗ 0.2 + 0 ∗ 0.3 = 0.167

Now that these values have been established, it’s time to talk about the 4 different

strategies that the HNF allows us to look at. When deciding which strategy to

ultimately choose, risk and fear of being out-guessed is taken into consideration.

The benefits of the HNF is that it allows a planner to look at the game in differ-

ent ways and directly compare these different approaches against each other. Vane

proposed 4 unique approaches that a planner can choose from, deemed hyperstrate-

gies, which are simply four different ways to formulate a mixed strategy. These four

hyperstrategies are the NEMS, Modeling Opponent (MO), Weighted Subgame (WS),

and the Pick Subgame (PS) strategy. These strategies are compared to each other by

their EU. The EUs of the hyperstrategies are based off the cumulative mixed strat-

egy for the column player Cσ. Since the planner may be unsure of their perception

in the opponents strategy, the EU of a given hyperstrategy for the planner changes,

depending on how much confidence the planner has in Cσ. This can be seen as the

row player’s confidence the belief contexts he assigned the column player’s different

perceptions. Vane characterized this measure of confidence as a fear of being out-

guessed, where having less fear is equal to having more confidence. These concepts

are explained further in the following sections. The first hyperstrategy to look at is

the NEMS. This hyperstrategy is the basic mixed strategy found when solving the

Nash equilibrium of the full game. Once this mixed strategy for the row player is
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found, the EU for the NEMS game can be found as well as the hyperstrategy EU

(HEU) when there is belief in subgames and explicit games being played. The EU

from belief in these other games is found by considering the column players mixed

strategy to be CΣ as opposed to C0 for the regular EU of the full game. Table 11

shows the Rock, Paper Scissors Game with additional rows on the bottom of the RMS

section which are used to record these EU values.

The EU is calculated by multiplying the utility of a cell by the chance it has

of being selected which is found by multiplying the corresponding RMS and CMS

probabilities together. This is represented by the equation EU = Σ(i = 0)mΣ(j =

0)nuij ∗ ckj ∗ rlj where k refers to a CMS to include CΣ and l refers to a specific

hyperstrategy. The calculations for these values turn out to be 0 for both.

EU(∗, CΣ) = 0 ∗ 0.533 ∗ 1/3 + (−1) ∗ 0.3 ∗ 1/3 + 1 ∗ 0.167 ∗ 1/3 + 1 ∗ 0.533 ∗ 1/3 + 0 ∗

0.3 ∗ 1/3 + (−1) ∗ 0.167 ∗ 1/3 + (−1) ∗ 0.533 ∗ 1/3 + 1 ∗ 0.3 ∗ 1/3 + 0 ∗ 0.167 ∗ 1/3 = 0

EU(∗, C0) = 0 ∗ 1/3 ∗ 1/3 + (−1) ∗ 1/3 ∗ 1/3 + 1 ∗ 1/3 ∗ 1/3 + 1 ∗ 1/3 ∗ 1/3 + 0 ∗ 1/3 ∗

1/3 + (−1) ∗ 1/3 ∗ 1/3 + (−1) ∗ 1/3 ∗ 1/3 + 1 ∗ 1/3 ∗ 1/3 + 0 ∗ 1/3 ∗ 1/3 = 0

Table 11. Rock, Paper, Scissors NEMS

CΣ 0.533 0.3 0.167
0.3 C2 1 0 0

0.2 C1 1/3 2/3 −
0.5 C0 1/3 1/3 1/3

R2 R1 NEMS 3x3 game row\col Rock Paper Scissors
− 0 1/3 Rock (0, 0) (-1,1) (1, -1)
− 2/3 1/3 Paper (1, -1) (0,0) (-1,1)
− 1/3 1/3 Scissors (-1,1) (1, -1) (0,0)

0 EU(*,CΣ)
0 EU(*,C0)
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The next hyperstrategy is MO. In this hyperstrategy the planner plays the pure

strategy or row that gives the best EU with consideration to CΣ while the other

strategies are given a probability of 0. The EUs are calculated the same way as for

the NEMS. The zero-sum hypergame in Table 12 demonstrates how this is calculated.

There is an additional column in the RMS section for the MO mixed strategy.

The EU for each row is calculated and shown in parentheses in the MO column.

row 1 EU = 2 ∗ 0.5165 + 5 ∗ 0.2167 +−3 ∗ 0.2668 = 1.3161

row 2 EU = 3 ∗ 0.5165 + 0 ∗ 0.2167 + 1 ∗ 0.2668 = 1.8163

row 3 EU = −1 ∗ 0.5165 + 6 ∗ 0.2167 +−2 ∗ 0.2668 = 0.2501

Since row 2 has the highest EU it is chosen as the MO strategy which can be seen

by the ‘1’ in row 2 of the MO column. MO has an equal or greater EU than the

NEMS in both EU (*,C0) and EU (*,CΣ). Therefore the row player can only gain by

playing the MO hyperstrategy. This shows how a planner can use the belief that the

opponent is possibly playing different games to their advantage and make decisions

with potentially higher payoffs. Vane refers to strategies like this as fully effective

because they are no worse than NEMS while a partially effective hyperstrategy can

potentially do worse.

Table 12. Hyperstrategy MO

CΣ 0.5165 0.2167 0.2668
0.1 C2 1 0 0

0.5 C1 0.833 0.167 −
0.4 C0 0 0.333 0.667

MO R2 R1 NEMS 3*3 game row\col col 1 col 2 col 3
0(1.3411) − 0.5 0 row 1 2 5 -3
1(1.8163) − 0.5 0.889 row 2 3 0 1
0(0.2501) − 0 0.111 row 3 -1 6 -2

1.8163 1.642 EU(*,CΣ)
0.667 0.667 EU(*,C0
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The next hyperstrategy is WS. In this scenario the planner demonstrates his belief

that subgames are being played and places his weight on each subgame proportionally

to the belief context. To find the mixed strategy values for WS, each subgames mixed

strategy is multiplied by their respective belief context. The resulting values are

summed for every strategy to obtain the mixed strategy probability for a particular

strategy. The equation for the WS mixed strategy is wsi = Σk
j=0rij ∗ Pi where i is a

row for a particular strategy and j is a particular RMS. The normal form hypergame

seen in Table 13 gives an example of the WS.

The probability calculations for the WS column are:

Row 1 = 0.5 ∗ 0.3 + 0 ∗ 0.7 = 0.15

Row 2 = 0.5 ∗ 0.3 + 0.889 ∗ 0.7 = 0.7723

Row 3 = 0 ∗ 0.3 + 0.111 ∗ 0.7 = 0.0777

In this case the EUs for the WS were less than that of the NEMS meaning the

WS would not be an effective hyperstrategy. This is not always the case however as

WS can be effective in other games given the right conditions.

The last hyperstrategy that remains to be discussed is PS. PS is fairly simple.

This strategy requires the planner to choose the subgame with the least amount of

columns. Also no matter what the amount of rows in the subgame, all the rows are

Table 13. Hyperstrategy WS

CΣ 0.25 0.2831 0.4669
0.3 C1 0.833 0.167 −

0.7 C0 0 0.333 0.667
WS R1 NEMS 3*3 game row\col col 1 col 2 col 3
0.15 0.5 0 row 1 2 5 -3

0.7723 0.5 0.889 row 2 3 0 1
0.0777 0 0.111 row 3 -1 6 -2
1.057 1.139 EU(*,CΣ)
0.5163 0.667 EU(*,C0
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included when calculating the EUs. This is because having more rows for the planner

can only increase the EU. Table 14 is an example of the PS in the HNF.

For the PS the C1 CMS was chosen as it has the least amount of columns. The

results show both EUs for PS being lower than that of the NEMS making this strategy

ineffective.

Another way to gauge the effectiveness of a strategy is to compare the hyper EU

to the worst case scenario utility for a which Vane refers to as G. G is found by finding

only the worst column the row player can go against and calculating that EU. Table

15 shows the Rock, Paper Scissors Game with additional rows on the bottom of the

RMS section which are used to record these EU values.

To find the G value for a mixed strategy, calculate the EU against each column.

So for PS, find the EUs when column plays Rock, Paper and Scissors.

Rock EU = 0 ∗ 0 + 2/3 ∗ 1 + 1/3 ∗ −1 = 1/3

Paper EU = 0 ∗ (−1) + 2/3 ∗ 0 + 1/3 ∗ 1 = 1/3

Scissors EU = 0 ∗ 1 + 2/3 ∗ (−1) + 1/3 ∗ 0 = −2/3

The worst case for the PS strategy occurs when column plays scissors and the value

of -2/3 is stored in G. The Rock, Paper Scissors normal form hypergame in Table 15,

shows that the PS has a higher EU when considering subgames than the NEMS and

that the EU for C0 is equal. This may make it seem like PS is a full proof strategy.

Table 14. Hyperstrategy PS

CΣ 0.25 0.2831 0.4669
0.3 C1 0.833 0.167 −

0.7 C0 0 0.333 0.667
PS R1 NEMS 3*3 game row\col col 1 col 2 col 3
0.5 0.5 0 row 1 2 5 -3
0.5 0.5 0.889 row 2 3 0 1
0 0 0.111 row 3 -1 6 -2

0.8658 1.139 EU(*,CΣ)
0.1655 0.667 EU(*,C0
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Table 15. Hyperstrategy with G Values

CΣ 0.333 0.467 0.2
0.4 C1 1/3 2/3 −

0.6 C0 1/3 1/3 1/3
PS R1 NEMS 4*4 game row\col Rock Paper Scissors
0 0 1/3 Rock (0,0) (-1,1) (1,-1)

2/3 2/3 1/3 Paper (1,-1) (0,0) (-1,1)
1/3 1/3 1/3 Scissors (-1,1) (1,-1) (0,0)

0.133 0 EU(*,CΣ

0 0 EU(*,C0

-0.667 0 G

However, when looking at the worst case scenarios, it is seen that PS does worse

with an EU of -0.667 compared to 0 for NEMS. This shows how the HNF can allow

a planner to gauge the risk they are making in their decisions and find strategies

that can take advantage of knowledge gained against the opponent. The variable g

is used to quantify how much a planner believes he may be outguessed. The variable

g can take on a value from 0 to 1 representing the percentage of this belief. 0 means

that the planner has no fear of being outguessed while a 1 indicates the planner

believes 100% he is being outguessed and all belief should be only in the full game.

The g value is used to calculate the HEU of any hyperstrategy. The equation is

HEU(hyperstratgey) = EU(hyperstrategy, CΣ)− g ∗ (EU(hyperstrategy, CΣ)−G)

This equation produces a value that is between EU(hyperstrategy,CΣ ) and G based

on the value of g. These values represent the best and worst case values. These values

can also be seen as the EUs with no fear of being outguessed and complete fear. Once

a planner determines their g value, they can determine their HEU and make decisions

based off this value.
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2.4 Cyber Warfare

Since its introduction hypergame theory has been applied to many fields to better

understand interactions and outcomes in conflicts and gather insight for future plan-

ning. Cyber warfare is one of those fields that has been explored when it comes to

hypergame theory although this research is still considered in its infancy. Game the-

ory has been used in the past to consider cyber warfare scenarios and a lot of insight

has been gained from it. Usually these games involve an attacker and a defender of

a network, both selecting different strategies to maximize their utilities. However,

cyber warfare deals a lot with deception and learned belief about an adversary in

the real world. Hypergame theory is prime to model these aspects of cyber warfare

where simple game theory may have trouble. Using hypergame theory the planner

can make more dynamic decisions based on their perceptions of the adversary which

could lead to better outcomes. In order to understand how to model these situations

it is best to first understand physical systems. This section briefly touches on CPS

to better understand the models.

Cyber-Physical Systems.

Ever since the computers have been used to process and pass information quickly

and efficiently, people have sought ways to harness this capability to improve processes

in industry as well as products that affect our daily lives. This integration of the

cyber world with tangible physical systems creates what is known as CPS. A CPS

is a system that utilizes computer technology to affect a physical component in the

real world. Figure 4 [36] shows an example of the basic features of a CPS. First

are the computers that provide the command and control of the system. They pass

information over communication medium that may be directly wired or connected

over a wireless network to actuators. Actuators are mechanisms, such as motors,
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that are able to take input from the computer through a digital to analog converter

(DAC) and perform the specified task. On the other end of the system are the sensors

that capture information from the physical world and use analog to digital converters

(ADC) to send information to the computers. The computer takes that information

and decides how to affect the actuators and continue the feedback loop. Real world

examples of these systems can include power plants that utilize supervisory control

and data acquisition (SCADA) control systems, smart vehicles that have built in

computers that make it easier and safer to drive, pace makers that control a patient’s

heart rate, and even future talks of smart cities where the city’s infrastructure is

monitored by sensors and maintained and controlled by a network of computers [37].

From these examples alone there is no question why it is important these systems

function properly. As cyber technology is increasingly integrated into physical systems

in today’s world, the stakes for securing these systems increase as well.

Figure 4. Basic Cyber-Physical System
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Security.

As cyber technology continues to proliferate and integrate into different physical

systems these systems can become vulnerable to cyber attacks. Prior to the advent of

cyber integration, attackers would need to physically interact with a system to achieve

their desired outcome. This posed several risks on the attacker including the risk of

getting hurt and greater chance of being caught. Through cyber attacks the attacker

can remain out of harm’s way and mask their true identities to prevent attribution.

These cyber attacks target the channels of communication as well as the communica-

tions themselves to disrupt system capabilities and/or intercept data. A secure CPS

must be able to maintain the traditional cyber security goals of integrity, availability,

and confidentiality. Integrity in CPS refers to the ability to ensure communication is

being passed throughout the system without being altered. A cyber attack targeting

communication integrity in a CPS can cause system delays, improper functions and

even system failure. Availability in CPS refers to the ability for communications flow

freely at all times. Although a cyber attacker can reduce the availability of a CPS

by affecting the integrity of the communications, another way to accomplish this is

by simply targeting the communication medium to prevent information from being

passed properly in the first place. Lastly, confidentiality in regards to a CPS refers

to protecting information that may be proprietary, or private from getting released.

One way to accomplish this is through utilizing secure channels of communication

and secure protocols. One form of defense can help reach multiple cyber security

goals other than their specific intent as seen with secure channels of communication.

It is also key to point out that security mechanisms in a CPS can run concurrently

so the defender can defend all the potential threats at the same time which is also

within their best interest although a lot cyber models only allow a single defense at

a time.
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2.5 Modeling Cyber Systems via Game Theory

New kinds of cyber attacks and ways to defend against them are constantly being

encountered so it should be no wonder that there have been numerous models built

to capture the different aspects of these scenarios. Given their inherent differences

these models do share some similarities, one being that models simplify reality. Real

life cyber attacks can be very complicated with the multitude of attacks, methods of

defense, and potential targets. Researchers have attempted to compile the different

kinds of scenarios in cyber that game theory can be applied to [38]. Attempts to take

into account all the different variables and present the results in a sensible fashion

would be a very arduous task even for a computer. While the following discussed

models look at their cyber situations with varying degrees of detail they mainly focus

on the key aspects of the attack and defense. This focus allows efficient analysis of

the situation while still providing some meaningful insight that can be applied in

more realistic conditions. Another feature that these models share are having similar

participants. These players include defenders and attackers pitted against each other

commonly, although not always, yielding a two player game. During real cyber attacks

there can be more than two actors at play, but the reasoning for predominantly two

player models goes back to the idea of simplification. The actual differences between

models lies in a few key areas. These areas include the actions available to the

game participants, how utility are calculated, the scenario, and lastly the structure.

By varying these elements most cyber scenarios can be modeled, with each variation

providing their own benefits. The following text considers some of the types of models

that can be created by changing or even combining the game types.
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Linear Programming.

Although a linear programming model is not regarded as typical game model sys-

tem it can be very effective at modeling a game where each player is given objectives

and constraints. From a game perspective however the goal is not to maximize each

player’s payoffs, but to find a Nash equilibrium where each player has no incentive

to deviate from their actions given the other players’ actions. Simply optimizing ac-

tions to maximize each player’s objectives would instead produce a Pareto front of

solutions. In a Pareto front no player would be able to change their action without

possibly decreasing the utility of the other players, which ii a zero-sum game implies

incentive for a player to deviate from their actions and receive a better pay off. One

example of linear programming used to model a two player cyber defense game is seen

in Ming Zhang’s research on stealthy attackers on a network [39]. Ming Zhang ef-

fectively used linear programming to model how a defender would protect networked

nodes from an attacker who is knowledgeable on the environment and is also trying to

remain undetected as it attacks different nodes. Using the notations in Table 16linear

programming model displayed in Equations 3 and 4, Zhang was able to find the con-

ditions necessary for a Nash equilibrium and conjectured there could potentially be

more than one. Equation 3 has an optimization function that is maximizing the sum

of the defender’s payoffs when the nodes are compromised. In this equation, piri

represents the benefit to the attacker. Meanwhile mi(riwipi−CD
i ) is the total benefit

to the defender after subtracting the cost of the defense for that node. The value

is negated because the less benefit the attacker receives the better for the defender.

This could have been avoided by having the objective be minimized although the

current set up essentially works the same. The constraints show that the defender’s

frequency of recovery on the nodes is limited by their budget and the attacking time

on the node. The attacker’s Equation 4 is similar to Equation 3. The attacker is
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trying to maximize their benefit found in ri. However the attacker must also factor

in the cost to attack a node and the defender’s efforts to recover the node captured

in mi(riwi − CA
i ). The attacker’s constraints show that they are limited by their

budget, and the sum of their efforts distributed over the nodes cannot exceed 100%.

This method of modeling network security incidents works when each player’s action

are more easily represented by variables with changing values and when constraints

are being considered.

Table 16. Linear Program Model Notations

Symbol Meaning

N number of independent nodes

ri benefit per unit of time by compromising node i

wi attacking time for node i

CA
i attackers move cost for node i

CD
i defenders move cost for node i

B budget to the defender

M budget to the attacker

mi frequency of recovery action for node i

pi probability of immediate attack on node i once it recovers

Defender’s Modeled Objective

max
mi

N∑
i=1

−[piri −mi(riwipi − CD
i )]

s.t.
N∑
i=1

mi ≤ B

0 ≤ mi ≤
1

wi
,∀i

(3)
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Attacker’s Modeled Objective

max
pi

N∑
i=1

pi[ri −mi(riwi − CA
i )]

s.t.
N∑
i=1

miwipi ≤M

0 ≤ pi ≤ 1,∀i

(4)

Normal Strategic Form.

One of the most popular game types used to model situations in various fields

is the normal strategic form game. Used in many classic games in game theory,

this model features actions for the attacker and defender and payoffs based off every

possible combination of those actions. An example of this model in cyber defense can

be found in the model proposed by Anibal Sanjab and Walid Saad [40]. From this

research, in Table 18 is the zero sum normal form game and Table 17 the notations

used to model an incident where a defender must choose which cyber assets on a

network to protect from an attacker who can have varying levels of ability unknown

to the defender. The research was able to show that a defender could benefit from

making moves that deviated from the equilibrium if the attacker was not operating

at a high level. Strategic form games benefit from being simple to understand and

build, however they operate with the assumption that a defender and an attacker

make moves simultaneously which is not always the case.
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Table 17. Normal Form Model Notations

Symbol Meaning

Nc total number of cyber nodes

Np total number of physical nodes

C set of cyber nodes in system

P set of physical nodes in system

rc,p probability cyber node c ∈ C failed, given physical node p ∈ P failed

κc probability of failure of c, κc = 1 if c not defended from attack otherwise κc ≈ 0

πp probability of failure of p,
∑Nc

c=1 rc,pκc

fp cost of failure of p

na total number of nodes that can be attacked at any given time

nd total number of nodes that can defended at any given time

Si set of strategies si, i ∈ {a, d}, si is a subset of cyber nodes, Nc, being attacked(sa)/defended(sd), |Si| =
(
Nc

ni

)
Ef expected total loss to the system, Ef =

∑Np

p=1 πpfp, Ud = −Ef and Ua = Ef

Table 18. Normal Form Game

Attacker/Defender Actions = saj

Actions = sdi Utility =(Ud(s
d
i , s

a
j ), Ua(s

d
i , s

a
j ))

Stackleberg Game.

There are times when a defender may make a move first and the attacker responds

and vice versa. This can be seen in the game studied by Lin Chen where cyber assets

armed with intrusion detection systems are protected and attacked with different

probabilities. The scenario was modeled with a strategic form game first and then a

Stackelberg game [41]. A Stackelberg game is where one of the game’s players makes

the first action and the other players react to it. This style of game facilitates the

analysis of scenarios where a defender can see the strategy of an attacker and react

accordingly and vice versa. Another example of a Stackelberg game can be seen in the

research model of a network administrator applying patches to affected systems after

an attacker has introduced viruses into the environment [42]. Using a Stackelberg

53



game is just one way of modeling a scenario where the actions are not simultaneous

as they can also be modeled using the extensive form. Similar to extensive form

games, the Nash equilibrium of a Stackelberg game can be solved through backwards

induction as seen in the earlier example. The additional benefit of an extensive form

game is that it works well at capturing multiple rounds of interactions and can easily

be converted to strategic form if needed

Signaling Game.

Another game type that allows players to take turns is the signaling game. The

signaling game is very similar in purpose to the Stackelberg game but it builds on

the idea of uncertainty. In a signaling game there are two players which consist of

the sender and the receiver. The sender has the property that they can be one of

several types. Different types of senders have access to different actions which are

referred to as messages. After the sender completes his action/sends his message,

the receiver receives it and depending on the action they receive, they complete their

own action that gives them the best payoff. The sender also receives a payoff based

on the receiver’s final actions. The uncertainty in the game stems from the fact

that the receiver is unaware of the type of sender, which factors into the payoffs

each player gets after the receiver’s actions. Therefore it is up to the receiver to

make the best determination of the sender’s type based off the message they receive

from the sender. This type of game allows for the sender to mask their potential

payoffs to the receiver as well as their future options for messages to the receiver

if there is subsequent play. This game type has been used to model a network of

nodes where a defender, playing the receiver, is responsible for protecting the good

IDS equipped nodes from the malicious nodes [43] and the notations for this model

are seen in Figure 19. The uncertainty lies in the defender not knowing the true
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identity of the malicious nodes, therefore having to react to the messages they receive

from the sender. Another example of this game can be seen in the 2004 paper by

Animesh Patcha which applied game theory to intrusion detection in mobile ad hoc

environments. A similar approach was used by Hayreddin Ceker in 2016 [44]. This

research looked at the scenario where a network is being subject to denial of service

(DOS) attacks. As can be seen in figure 5, the defender acting as the sender sends

a signal to the attacker attempting to mask whether the sender is a normal system

or actually a honey pot that wants to be attacked. The values by the attacker’s

decision in the diagram represent the utility awarded to the defender and attacker

respectively. By using a proper strategy the defender can convince the attacker to

target the honey pot which they can then use to analyze the attacker’s strategies and

improve defenses.

Table 19. Signal Game Model Notations

Symbol Meaning

A attacker (signal reciever)

D defender (signal sender)

θD nature’s decision of defender type

αN , αH probability of signaling ‘N’ from normal type and honeypot defender, respectively

µ attacker’s belief that the ‘N’ signal is received from normal type defender, 1− µ from type honeypot

γ attacker’s belief that the ‘H’ signal is received from normal type defender, 1− γ from type honeypot

ca, co attacker’s cost of attacking and observing respectfully

ba, bo benefit of attacking and obesrving respecftfully

cc, cs, ch, cw defender’s cost of compromise, signaling, honeypot and being watched, respectively

bcs, bw customer satisfaction on a normal system and benefit of watching an attacker on a honeypot respectively
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Figure 5. Signal Game in Extensive Form

Stochastic Game.

Another game type that can be used to model cyber scenarios with uncertainty

is the stochastic game. The stochastic game works by having both players select an

action just like in a normal strategic game. Depending on the actions selected by the

players, the actors transition to a different state and receive their payoffs. The state

the players transition to is not deterministic however, but probabilistic based off the

prior state and the actions selected by the players. This game type is very good at

modeling situations where the environment is not completely known or where the same

actions do not necessarily guarantee the outcomes. Also stochastic games are very

useful for modeling games where there is repeated play as the actors can transition

to multiple states and receive a final payoff based off the payoffs received throughout

the game. In the paper “Dynamic Policy Based IDS” by Quanyan Zhu [45], the

stochastic game was used to model how an intrusion detection system would respond

to different attacks it receives. The notations for this model are seen in Table 20.

As the attacker would send different attacks the IDS would respond by switching to

different protection configurations which would place the computer system in different
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states as seen in the figure below 6. The research was able to show that a dynamic

IDS capable of wisely changing its level of protection dependent on the situation

would operate more efficiently than a typical static IDS systems while still providing

acceptable security.

Table 20. Stochastic Game Model Notations

Symbol Meaning

S set of possible states, si, of the computer system

L set of available libraries, lj, that the detector can use to detect attacks

Fi the detectors configuration which is a subset of the available libraries L

ci cost of a particular library li

ai an attack available to the attacker

di damage caused by a particular attack ai given the current state and detector configuration, Fi

r utility received by the players which is dependent on the current state and actions of both players

Figure 6. Stochastic Game Flow Chart

Hypergames.

So far the models presented were analyzed without using hypergame analysis. Hy-

pergame analysis is beneficial because it examines games where players make decisions

based off their perceptions of the game which can be affected by different factors that

are overlooked in traditional game theory. The analysis of these games can possibly

lead to more accurate or realistic conclusions for the decision maker. This allows
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different players to be playing different versions of the same full game. The different

versions of the game are created when certain aspects of the full game are removed

from a player’s knowledge creating an incomplete information game. Players may be

unaware of certain actions available to the other players or even unaware of other

player’s in general. If a player is capable of keeping aspects of the full game hidden

to the other players they may be able to use the information to gain an advantage

and a more favorable outcome. A detailed discussion of the hypergame theory model

can be discovered in Kovach’s 2015 paper [11].

This idea of hypergames was used in 2016 to model the interactions between

a network administrator and an insider threat [46]. This paper focused on getting

readers spun up on hypergame theory but it also gave a game example of how it could

be used. In this game the system administrator had access to stratagem actions that

the insider threat was unaware of. The stratagem acted similar to a honeypot. The

system administrator was able to use this action to deceive the insider and get a better

outcome then previously obtainable. The paper also explored the use of deception in

iterative play and how a system administrator would have to adapt to an evolving

insider threat.

Another way to model hypergames is through the normal form hypergame dis-

cussed earlier in this chapter. As stated in previous sections the uncertainty comes

from the row player having to form a probabilistic distribution over which sub-game

the column player is participating in which determines which actions are available

to the column player. This allows a multitude of different situations to be modeled

when a defender is unsure of the attacker or vice versa. This can be seen in recent

research where a hypergame model was used to examine how a defender would be able

to adapt their beliefs of an attacker’s true strategy based on the attacker’s actions.

This research showed that a defender that altered their belief of an opponent’s skill in
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repeated encounters could better protect the network at a lesser cost. The strengths

of the hypergame model also showed how a defender and an uncertain attacker would

react to each other after iterated play [10]. This model is unique in that the attacker

was actually made the row player. This allowed the analysis to capture the uncer-

tainty an attacker has for a defender’s capabilities, thus more closely modeling an

aspect of real life network interactions. This also highlights how in a hypergame,

either player can be used to as the row player to get additional insight into the un-

certainty of a cyber situation. Additionally the author researched and demonstrated

it is possible for a player to purposefully act in ways to skew another player’s beliefs

in order to gain a better outcome in future interactions. This demonstrated how a

hypergame model can also be used to consider deception amongst players.

In 2013 Yadigar developed a hypergame model for information security as a way

to address real world situations where the players had asymmetric perceptions of the

game they were playing [47]. He proposed a two level hypergame based off Bennet’s

model and used the HYPANT hypergame software to run his experiments. Through

this effort Yadigar was able to demonstrate numerically how hypergames can be used

to select the best attack and defense actions in a contested network.

Hypergame theory was also used to model an attacker-defender game from the

point of view of the defender by Alan Gibson in his paper Cyber Security using

Hypergame Theory [9]. In the paper Gibson uses Vanes HNF to run games with

different levels of attackers and defenders. The different levels for both attackers and

defenders included All Out, High-Level, Mid-Level, Low Level and Nuisance Defender.

These different levels were used to update the functional utility values which were

influenced by the level of the player. The utility values were calculated in such a

way that the defenders received the best utility when going against a similar level

attacker. This means, that an All-Out defender would receive the best utility against
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an All-Out attacker. Against any other attacker an All-Out defender would be over-

reacting which would cost the defender. Each combination of level of attacker and

defender was placed into a HNF model. Each game was also played over multiple

iterations. These iterations included all values being static, only the variables being

updated, only the belief contexts being updated, only the g values being updated,

and all values being updated. The purpose of this set-up was to compare the results

of an attacker defender model that was static to a more realistic one where a defender

and attacker would make adjustments and change their beliefs based on events of

a previous game, basically learning from one game to the next. The results of this

paper showed that the defender can increase their utility ratio by using information

gained from previous games. The results show that the defender was able to get a

better utility when adjusting their belief contexts and g value in response to past

games. This demonstrates how experience can be used to build good belief contexts

that can result in better decision making for the planner. This section showcased

some of the few examples of hypergame theory being used in a cyberspace scenario

so far and there remains a lot more that can be explored in this space.

2.6 Chapter Summary

This chapter introduces the history of game theory being developed from decision

theory. Hypergame theory expands on game theory by accounting for misperceptions

player’s may have in a game. This allows for a more accurate modeling of different

game scenarios. It also supports the idea of how a player can deceptively incite

misconceptions into the other players to achieve payoffs that are greater than the

Nash equilibrium. The HNF is able to capture the payoffs players could expect given

their beliefs on the other player and scale these values according to the player’s fear of

being outguessed. CPSs are the integration of computers with physical components
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and are therefore vulnerable to cyber attacks. Game theory has been used to explore

the interactions between a defender and an attacker in a cyber attack. Hypergame

theory is also utilized to more accurately model the deception and misperceptions

that are common in these cyber scenarios. This sets the stage to look at a unique

attacker/defender model based on a CPS developed in the next chapter and the

methods that are used to analyze it.
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III. Methodology for Hypergame Analysis

In a cyber defense scenario there are a lot of different factors that come into play.

These include the actions available to the defender as well the attacker, and how

these different actions interact with each other to produce interesting outcomes and

payoffs to the participants. This chapter introduces a modeling framework and usinf

that framework, sees the development of a model that can be used to investigate

the behaviors of a defender and an attacker in a cyber defense scenario for a cyber-

physical system (CPS). The benefits of the hypergame normal form (HNF) method of

analysis are elaborated on. This chapter also discusses aspects of AFIT’s Hypergame

Analysis Tool’s (HAT) features, including recent upgrades and how they are used to

conduct model analysis.

3.1 Model

In order to analyze cyber conflicts, a model must be created that acts as a rep-

resentation of a real life scenario. Although the model is not expected to contain all

the complex interactions of an actual event it should maintain the key elements so

that the analysis can carry over information to the real world. In this section a cyber

defense modeling framework (CDMF) is introduced that simplifies the development of

a cyber defense model, and is flexible enough to model a multitude of cyber scenarios

and environments. The CDMF is used to develop a model involving cyber conflict in

a CPS for analysis in the HAT software.

The CDMF first finds the actors that participate in the game. Typically the actors

are going to be a defender, such as system administrator, and an attacker. Once the

actors are determined, the possible actions of the attacker can be listed. For each

action of the attacker, the defender should have a counter action. Once the actions are
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determined, its time to find the payoffs for each possible pair of the attacker’s actions

with the defender’s actions. When calculating the payoffs it is important to take into

account the cost an action has on the actor to perform the action. The payoffs also

take into account the accomplishment of the mission at hand. The attacker’s goal is

to achieve some minimum level of damage and the defender’s goal is minimize the

level of damage. In this framework, the attacker can receive a penalty if the mission

is not met. The attacker does not ever get a bonus for achieving the mission because

the bonus is already captured in the damage done. In a similar vein the defender

can receives a bonus for completing the mission at hand. The defender does not have

a penalty applied to their payoffs if they fail the mission because this is captured

in the damage done by the attacker. Once the payoffs are determined a normal

form game can be built using each actor’s actions along with the payoffs found. The

benefits of this model are that it is simple, straightforward, and can easily be applied

to a normal form game for quick analysis. Other researches have used this same

approach [10], although this is the first time this framework has been formalized.

Other frameworks have been proposed to model cyber network scenarios [41], but

the CDMF framework focuses on being simple and flexible while other frameworks

proposed are more complex and can be limited by their structure. Another unique

benefit of this framework is that it incorporates the idea of completing or failing

a mission into the payoffs which is absent in other models. This is important to

capture because it provides incentive for the attacker to avoid inaction and also for

the defender to protect their system despite experiencing a cost.

The model that is used in the experiment is based off possible threats present

in a wireless sensor network (WSN) of a CPS [48]. Due to the wireless nature of

this network it is much more exposed to adversarial tampering since communications

are broadcast and anyone can be listening. Therefore it is important that a model
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can capture this scenario and be analyzed to help prepare a defender of this network

for these unique challenges. The first part of developing the model for the CDMF

framework is to define the actors. In this case the actors are the system administrator,

referred to as the defender, and the adversary targeting the WSN, known as the

attacker. Once the actors are determined their actions must be defined starting with

the attacker. In this model 4 actions have been identified that the attacker can

perform . The first is eavesdropping which constitutes the attacker listening in on

communications that are being passed between the wireless sensors in order to gain

private information. This action however does not affect the communications of the

network. The next action of the attacker is the replay attack. This action is similar

to eavesdropping as it requires the attacker to capture the information being shared

between wireless nodes. After intercepting the information the replay attack stores,

then resends the communications to other nodes to disrupt the network. Another

purpose of the replay attack is to imitate a good node and attempt to gain access into

the network by replaying authentication information. The attacker can also perform

a Byzantine attack. This attack requires the attacker to intercept communications

and modify them before forwarding the information to the recipient. This kind of

attack can really corrupt a network that relies on proper communication protocols.

Another action of the attacker is to perform a denial of service attack (DoS) where

the attacker tries to overwhelm wireless nodes with communication in order to get the

nodes to ignore legitimate traffic or even shut down entirely. This model also assumes

that an attacker may not always be present and therefore adds that the attacker may

do nothing as an action.

After the attacker’s actions have been identified, the defender’s actions that coun-

teract the attacker’s actions are found. This is where the simplicity of the model

can be seen as the defender’s actions are simply to defend against each action of
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the attacker. This means, the defenders actions are defend eavesdropping, defend

replay attack, defend byzantine attack, defend DoS, and defend nothing. For the

purpose of analysis, these actions do not need to be specified directly in the model

as in how they actually defend the attacks. Instead, the specifics of these actions

become more important when determining the payoffs achieved when the attacker’s

action goes against a particular defender’s actions. It is here that specific strategies

of the defender are examined to determine the costs of these actions. The costs for

the attacker’s actions are also determined. The status of the mission is calculated by

using thresholds. If the damage is limited to a certain threshold the defender receives

a bonus, while the attacker receives a penalty if the damage is not above a certain

threshold. This is shown in Equations 5 and 6. If the thresholds are exceeded then

the penalty and the bonus drop to 0.

missionPenalty =

 penalty damage ≤ attackerThreshold

0 damage > attackerThreshold
(5)

missionBonus =

 bonus damage ≤ defenderThreshhold

0 damage > defenderThreshhold
(6)

The utility for the defender is determined by Equation 8 and the utility for the

attacker is determined by Equation 7.

utility = missionBonus− damage− cost (7)

utility = damage− cost−missionPenalty (8)

The cost of the actions for the attacker and defender can be expressed in a mul-

titude of ways. One way is through using real world data and figures. The values

for the cost, damage, missionBonus and missionPenalty also need to be normal-
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ized so they can properly be operated on in the equation. This can be done through

some kind of conversion. In order to keep this model simple the cost of an action

was based on the complexity of the action. A more complex action had a higher

cost and the values ranged between 1 and 5. The complexity ranking for attacker’s

action starting with the most complex is byzantine attack, replay attack, eavesdrop-

ping, DoS and nothing. This ordering is determined logically. A denial of service

attack can be accomplished many ways but with a wireless network it can much more

easily by simply jamming the network with noise [49]. An eavesdropping attack can

be considered more complex in that it requires the attacker to have a receiver that

can capture and store transmitted data. The replay attack is more complex than

eavesdropping because the attacker must not only capture and store the transmitted

data but then be able to send it out again to be received by another node. Finally

the Byzantine attack is more complex than the replay attack in that it requires the

attacker to be able to modify the packets that it captures before sending them out

back out. The cost and complexity for the defender’s actions mirrored that of the

attackers action meaning defending a byzantine attack is considered as complex and

costly as the byzantine attack itself. The damage that a specific attack does against

a certain defense is determined by how well that defense would mitigate that attack.

Since there are cases where a defense may be able to defend against certain aspects

of a non-matching attack it would be able to reduce the effect of that attack to some

degree. Tables 21 and 22 shows the costs of the player’s actions. Table 23 shows the

damage each attack does against a specific defense.
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Table 21. Defense Cost

Action Cost
No Defense 0
DoS Defense 2
Eavesdropping Defense 3
Replay Defense 4
Byzantine Defense 5

Table 22. Attack Cost

Action Cost
No Attack 0
DoS Attack 2
Eavesdropping Attack 3
Replay Attack 4
Byzantine Attack 5

Table 23. CDMF Model Damage Caused By Specific Attack on Specific Defense

Attack

Damage Replay Attack Eavesdropping DoS Byzantine No Attack

0 Replay Def. Eavesdropping Def. DoS Def. Byzantine Def. Eavesdropping \ DoS \ Replay \ Byzantine \ No Def.

2 Eavesdropping Def. Replay Def. Byzantine Def. Replay Def.

4 Byzantine Def. Byzantine Def. Replay Def. DoS Def.

6 DoS Def. DoS Def. Eavesdropping Def. Eavesdropping Def.

12 No Def. No Def. No Def No Def.

As stated earlier, the cost of an attack is a value ranging from 1-5 that reflects how

complex the attack is to accomplish. The amount of damage an attack causes against

a particular defense is determined by how well the defense mitigates different aspects

of the attack. For example, the replay attack costs 4 which makes it the second

most complex option for the attacker. This also means the cost of a replay attack

defense for the defender is also 4. The replay attack does 0 damage against a replay

defense because it a perfect match. The replay attack does only 2 damage against an

eavesdropping defense because this defense may mitigate some aspects of the attack.

Meanwhile the replay attack does 6 damage against the DoS defense because this

defense does not match up well with the attack. All attacks cause the maximum of
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12 damage against a no defense action from the defender. For simplicity these values

are meant to represent a ranking as opposed to actual damage that an attack would

do against a particular defense in a real life scenario. The values for the mission

status also need to be set. For this model the attackerThreshhold was set to 1 and

the penalty was set to 3. This means that, the attacker has to do more than 1 damage

or they receive a penalty of 3 for failing the mission. The defenderThreshhold was

set at 2 and the bonus was set at 5. This means, that the defender receives a bonus

of 5 if they are able to keep the damage at 2 or below. Using these values, the normal

form game can be developed using the utility equations for the attacker and defender.

The final result is the normal form game in Table 24.

Table 24. WSN CPS Defender vs. Attacker Normal Form

Defender\Attacker Replay Attack Eavesdropping DoS Byzantine Attack No Attack

Replay Def. 1,-7 -1,-4 -8,-1 -1,-6 1,-3

Eavesdropping Def. 0,-5 2,-6 -9,1 -9,-2 2,-3

DoS Def. -8,-1 -8,0 3,-5 -6,-4 3,-3

Byzantine Def. -9,-3 -9,-2 -2,-3 0,-8 0,-3

No Defense -12,5 -12,6 -12,7 -12,4 5,-3

These values are all based on ranking the actions and outcomes against each other

rather than real world monetary costs or damage. This is done to make the model

easier to understand. These values can also be easily modified as seen in Appendix

B. The normal form game in Table 24 can be analyzed via HAT to determine the

appropriate mixed strategy for the attacker and the defender to achieve a Nash equi-

librium where each actor gains no incentive from deviating from their strategy. Due

to the nature of the values used, the results need to be interpreted in a way to apply

them to the real world. This is explored in Chapter IV. A hypergame analysis also
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determines how the opponent can be outguessed to achieve a better outcome for each

player which further develops the strategy moving forward.

This framework can be compared to the model developed by House and Cybenko

[10] in that both were applied to a hypergame and feature attack specific defenses.

However in the CDMF model the attacks are named specifically for the cyber attack

of a WSN network of a CPS while the House and Cybenko model referred to the

attacks generically as “attack x”, “attack y”, and “attack z”. The purpose of that

model was to prove a concept and not necessarily to apply to a specific situation as

the CDMF model does. Also the CDMF model captures the idea of rewarding the

defender for protecting the network and penalizing the attacker if they do nothing

at all. This more accurately reflects real world payoffs for both the attacker and the

defender that is not captured in the other model.

3.2 Method of Analysis

The proposed model is placed into a hyper normal form (HNF) hypergame. Hy-

pergame analysis of this scenario allows us to see what different strategies can be

taken based off different perceptions of the full game for the defender and even the

attacker. The goal is to estimate a more realistic outcome for the defender because

in the real world the defender is only assuming the possible attack vectors of the

attacker and equally an attacker may only know so much about the environment they

are trying to affect. This uncertainty can be captured in the hypergame to provide

much more applicable analysis. The actions in the CDMF bare resemblance to the 4

canonical information warfare strategies that were also investigated with the earlier

hypergame modeling technique [50] found in Fraser’s research [51] . This technique

however did not apply numerical analysis or facilitate the reasoning of strategies based

around an equilibrium. HNF is chosen to model the scenario because it is simple to
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understand as an extension of the standard normal form game. It allows multiple

states of perception to be modeled all at one time, and can also utilize real world

data to form its belief context percentages in order to gain a better solution. Another

aspect of the HNF that is beneficial is that it can measure the belief in being out-

guessed. This allows a decision maker to gauge their expected payoff based on how

confident they are in their beliefs. That means that a decision maker can instantly

see the consequences of playing safe vs taking a risk. This is something that is only

calculated in the HNF of hypergames as developed by Vane in his research.

3.3 HAT Tool

The HAT software is used to conduct analysis of the hypergames. The HAT soft-

ware is capable of modeling two player hypergames in their normal form and find the

hyper Nash equilibrium as well as the expected utility (EU) from all four of the hy-

perstrategies. First the user must enter in the parameters of the game which includes

each player’s strategies and the utilities they receive when these strategies are played

against each other. One thing to note is that the HAT software has the additional

feature of taking functional utilities as input which is absent in Gambit. This means,

that the utilities received can be represented as functions of variables. Once the value

of the variables are determined the utility value is calculated. This allows for a much

simpler modification of games whose utilities are not static across all conditions. After

inputing the strategies and the utilities for each player, the different game perceptions

and pre-conceived game strategies for the column player are entered. Game percep-

tions represent the different ways the row player sees the column player perceiving the

game and are referred to as subgames in HAT. For example in a hypergame of Rock

Paper Scissors, the row player may believe the column player perceives a game where

scissors is not an available strategy and only considers rock or paper as a strategy.
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The HAT software finds the new Nash Equilibrium under these conditions which may

alter the preferred strategy for the row player. Additionally row player can have a

preconception of the probability distribution of the column player’s strategies when

they play the full game. The preconceptions for these probability distributions can be

derived from research or observation. For example considering Rock, Paper Scissors

again, the row player can have a preconception that the column player abandons the

Nash equilibrium strategy and play Rock 20% of the time, Paper 10% of the time,

and Scissors 70% of the time based off statistics of prior games. The difference in this

pre-conceived game is that the player has an explicit belief that is not based off any

sort of equilibrium calculation. Each of these perceived games and strategy precon-

ceptions must be entered with a belief context which is a percentage representing how

much the row player believes the column player is actually playing according to that

game. The sum of the percentages for the belief contexts sum to 100%. Since the full

game is displayed by default in HAT its belief context is calculated as the remaining

belief context that has not been committed to other mixed strategies. Once this has

all been entered HAT runs the hypergame and displays the EU, the worst case EU and

the hyperstrategy EU (HEU) for all four of the different hyper strategies. The HEU

can also be adjusted based on the “fear of being outguessed” variable which takes a

value between 0 and 1. All these features make HAT a very useful piece of software for

finding hyperstrategies and their EUs. However there are some aspects that needed

to be improved to achieve a more comprehensive software seen in its game theory

counterparts such as Gambit. One of the key improvements that was made in this

effort was to simplify the process of adding belief context probabilities making the

software more user friendly, dynamic and reducing the chances of calculation errors.

Another improvement that was implemented was the addition of the mixed integer

programming (MIP) method of finding the Nash equilibrium to go along with support
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enumeration and the Lemke-Howson method that were currently present. Along with

reducing the gap between the number of Nash equilibrium methods found in HAT

and the more fleshed out Gambit software, the addition of the MIP method reliably

produces multiple Nash equilibriums for a game if available and can be modified to

find a user defined most optimal Nash equilibrium.

3.4 Update Belief Contexts

The HAT software is able to calculate hypergame Nash equilibriums based off the

belief context percentages of column mixed strategies (CMS). In order for hypergame

Nash equilibriums to be calculated properly the belief context percentages need to

sum up to 1. HAT required the user to enter the context beliefs for each for each

CMS manually including the full game CMS. This meant that it was up to the user

to ensure that the CMS belief contexts added up to 1. The system was not set up

to prevent context beliefs from summing less than or more than 1. Instead the HAT

software would continue to calculate the hypergame Nash equilibriums incorrectly.

In Figure 7 it is seen what would happen if a user did not enter belief contexts that

added up to 1.

Figure 7. Belief Context Do Not Sum to 1.

This image shows the belief contexts for the two CMS of the game. The belief

context for C1 is 0.765 which means that the row player believes the column player is

playing this strategy with 76.5% certainty. The belief context for C0 is 0.876 which

represents the row players 87.6% certainty that the column player is playing that
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strategy. Adding the row player’s beliefs gets 76.5% + 87.6% = 164.1%. Since it is

impossible to have over 100% certainty in something it is no surprise that this leads to

improper calculations of the HEUs. In order to make the HAT software more robust

and help avoid incorrect calculations the C0 value calculation was changed so that it

would no longer be entered manually, but instead be calculated dynamically based on

the amount belief context that was distributed to other CMSs. If there is any belief

context left after distributing amongst the other CMSs it would go to C0. Referring

to Figure 8 it can be seen that the CS1 CMS has been allocated 0.765 belief context.

Since the belief contexts must sum to 1 this means, there is 1− 0.765 = 0.235 belief

context left to be assigned to other CMSs. C0 is the only other CMS and it gets

the remaining uncommitted belief context of 0.235. This is calculated and entered

automatically without the user having to enter 0.235 for C0.

Figure 8. Belief Context Sums to 1.

This simplifies the process of entering the CMS belief contexts for the game while

removing chances for human error making the system more robust. Another improve-

ment that was added in this category was making the belief contexts for subgames

game specific just like the belief contexts for CMSs with pre-conceived strategies.

Prior to this update, HAT loaded with the same subgame belief context value being

used across every game. If the user wanted to use a different value for a different game

the software had to be closed, modified and loaded again. By adding this update HAT

can be loaded with each game having their own unique belief context percentage for

their subgame which makes HAT much more dynamic and user friendly.
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3.5 Update Nash Equilibrium Methods

Another update to the HAT software is the addition of the MIP algorithm to

calculate Nash equilibriums. This method was implemented into the HAT software

using the IBM ILOG CPLEX Optimizer library version 12.7 [52] as recommended

in the original MIP paper [31]. The code for this algorithm was completed in the

Netbeans IDE version 8.1 and can be seen in Appendix C. Prior to this update

HAT only found the Nash equilibrium through support enumeration and the Lemke-

Howson method. Different methods to find a Nash equilibrium each have their own

benefits. Some are easier to implement, some find multiple strategies, and some are

able to find certain strategies faster. Since each method has their own benefit, having

a variety allows all the different benefits to be explored. The MIP algorithm has been

shown to be faster than the Lemke-Howson algorithm although it is slower than the

support enumeration on average. For large games however, the MIP can be a good

alternative to support enumeration and the Lemke-Howson method where they might

have a hard time finding a solution quickly. Another benefit of the MIP algorithm is

that it can find multiple Nash equilibriums in one run. This paper hypothesizes that

different Nash equilibriums for a game can affect the calculations and final outcome of

the hypergame strategies. Therefore the implementation of MIP into HAT allows the

hypothesis to be tested. Another addition that MIP brings to the HAT software is the

ability to find optimal Nash equilibriums based on a user’s preferences. This makes

it easier to find the Nash equilibrium strategy that best fits a particular circumstance

in cases where there are multiple mixed strategies. For example there may be a Nash

equilibrium strategy that has a smaller support for the column player when compared

to another mixed strategy. The strategy with a smaller support for the column player

may be more desirable for the row player because they have less actions from the
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column player to worry about and prepare for. With this information the row player

can plan to push for their desired equilibrium strategy in the game.

3.6 Chapter Summary

This chapter introduces the CDMF which is a simple and flexible approach to

quickly model a cyber defense scenario. The CDMF is utilized to build a WSN CPS

model that is under threat of an attacker. The benefit of this model is that it can be

easily applied to a normal form or HNF game to conduct analysis. The HAT software

makes it possible to conduct HNF analysis of this new model. The improvements to

the software ensure its accuracy in calculations and allow multiple Nash equilibriums

to be analyzed much more easily. In the following chapter the model developed here

is analyzed using the improved HAT software to explore new analysis strategies for a

hypergame.
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IV. Design, Experiments and Results

4.1 Introduction

This chapter discusses the experiments that are run on a Blotto game and the

new cyber-physical system (CPS) model created in Chapter III. First the updated

Hypergame Analysis Tool (HAT) software is validated against classical games to

ensure accurate results when running the experiment. Then HAT’s application to

games within the cyber arena is demonstrated by running it against cyber related

models. Once this is established the experiments ran against the Blotto game and

the new CPS model are explained, and the results are displayed and analyzed.

4.2 Updated HAT Validation

This section tests the mixed integer programming (MIP) algorithm in the up-

dated HAT software against classic games to ensure its accuracy prior to running

experiments on the Blotto game and new CPS model. The classic games were se-

lected because they all have well established results. These tests ensure that the MIP

algorithm added to HAT can solve games with a single pure strategy and a single

mixed strategies. The test also validates the additional benefit of the MIP algorithm

to find multiple mixed strategies if they are available and display them in the HAT

software. The correctness of the results are all validated against results in GAMBIT

and cross-checked with prior documented and peer reviewed results.

Test Single Pure Strategy.

This section tests HAT’s ability to solve games with one pure strategy equilibrium.

The support for each player only contains one strategy. This means, that if each player

played there pure strategy they would have no reason to deviate from this strategy
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given the other player’s strategy. This is selected as the first test because dominant

strategies are relatively easy to calculate compared to mixed strategies.

Prisoner’s Dilemma, the most popular games that fits this category, is used to

test this out. This game consists of two criminals who must determine whether they

want to betray their partner for a chance at a reduced sentence or if they want to

remain quiet and risk a maximum sentence. The expected results of this game is

that both players choose to betray each other and receive a non-optimal solution.

Figure 9 shows the Prisoner’s Dilemma game entered into the HAT software and

the calculated equilibrium. Although the utilities in this game are different than the

version in Chapter II, the strategy is still the same. A value of ‘1’ is seen next to

the “Confess” strategy for the row player and the same for the column player. This

means, that both players are playing their dominant strategy and are not mixing for

the equilibrium. This aligns with the expected results and shows MIP was able to

correctly identify the NE strategy for this kind of game.

Figure 9. Prisoner’s Dilemma

Another popular game is the Deadlock game. It is very similar to the Prisoner’s

dilemma except that the payoffs in the game encourage the player’s to cooperate

instead of work against each other which produces a Pareto optimal outcome for the

players [53]. Just like the Prisoner’s Dilemma game, this game has only one pure

strategy. Figure10 shows the results of the game using MIP. The values of ‘1’ next

to the players’ strategies indicate the NE strategy is indeed a pure strategy for both

players. Also the payoffs in the game show that the player’s do achieve a Pareto
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optimal solution as opposed to Prisoner’s Dilemma game. This signifies that MIP

algorithm is able to properly identify the NE in games with one pure strategy.

Figure 10. Deadlock

Test Single Mixed Strategy.

This section looks at MIP’s ability to find mixed strategies in games that do

not have pure strategies. These games do not have a pure strategy because there

is always incentive for a player to change their strategy given the other player’s

strategy remains the same. Instead, the NE strategy is to mix their strategies among

the available actions. This guarantees that the support of these strategies is greater

than 1.

A popular game that fits this description is the classic Rock, Paper, Scissors game.

In this game one player or the other can achieve a better payoff by switching their

action given that the other player maintains there strategy. Therefore the NE strategy

for each player is to randomize evenly over all three strategies. Figure 11 shows the

value of ‘0.333’ next to each player’s actions. This means, that the NE for each player

is to randomly play each of the three strategies evenly. This aligns with the expected

result and shows that MIP was able to find the mixed strategy NE.

Figure 11. Rock Paper Scissors
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The next game to consider is the Matching Pennies game. This is a two player zero

sum game where each player simultaneously selects a face of a penny. One player’s

goal is to select the same face as the other player’s selection, which is considered a

match, while the other player’s goal is to select the opposite face of the other player’s

selection. It can be seen how in this zero sum game where there are no ties, if each

player knows what side the other selected there is one player who wants to switch

their side given the other player keeps their selection. This means, that there is no

pure strategy NE and only a mixed strategy NE. In Figure 12 the results of the game

using MIP show that each player mixes evenly over the available strategies. This

shows that MIP is able to solve games with a single mixed strategy NE.

Figure 12. Matching Pennies

Test Multiple NEs.

In this section the MIP implementation in HAT is shown to be able to find multiple

NE in games that have more than one mixed strategy. MIP finds an initial NE for

a game, but continues to find more until it determines that no more strategies exist

or the algorithm times out. All these strategies are stored and indexed. Different

strategies can be easily accessed on individual runs in the HAT software simply by

changing the index of the strategy MIP is referencing which is seen in Appendix C.

This is an improvement over HATs original method of finding equilibriums strategies

which only found 1 strategy per run. To test this feature MIP is used to run games

known to have multiple NEs including pure and mixed strategies to see if all the

strategies are found.
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Battle of the Sexes is the first classic game with the desired property of multiple

strategies that is tested against MIP in HAT. This is a two player non-zero sum game

where a man and a woman are trying to decide what to do for an activity. Each player

has their preference but they would rather agree to go to the same place then each go

do separate activities. This means, that there is a desire for each player to cooperate

and it can be seen logically that there are 2 pure strategies where both the man and

women agree on the man’s preferred activity or the woman’s preferred activity and

would not want to switch and be on their own. Less obvious is the mixed strategy

where each player mixes over their options. In Figures 13, 14, and 15 the results from

the game being analyzed in HAT show that all three strategies were found using the

MIP algorithm.

Figure 13. Battle of the Sexes: Pure Strategy 1

Figure 14. Battle of the Sexes: Pure Strategy 2

Figure 15. Battle of the Sexes: Mixed Strategy
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The next classic game that is tested against the MIP algorithm is the Chicken

game. This two player zero sum game looks at the situation where two cars are

driving towards each other and one of the cars has to swerve to avoid a crash. Each

driver would rather drive straight then swerve but would much rather swerve than

crash. This game has two pure strategy NEs where one driver stays straight and

the other swerves along with one mixed strategy where each driver mixes over their

actions. The results in Figures 16, 17, and 18 show that all the strategies were found

and MIP is capable of finding all the strategies in a game.

Figure 16. Chicken: Pure Strategy 1

Figure 17. Chicken: Pure Strategy 2

Figure 18. Chicken: Mixed Strategy

4.3 Cyber Application

HAT is capable of analyzing games from a hyper normal form game standpoint.

This proves useful in its ability to identify strategies that take into account knowledge
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a player may have on the other. This kind of hypergame analysis has been found useful

in the cyber arena when looking at attacker-defender models. This section looks at

how HAT can analyze models that were originated in standard game theory to find

new information and develop deeper strategies.

An intrusion detection model previously ran in game theory normal form [41] was

placed into the HAT software to analyze how a defender would use knowledge gained

on the attacker from playing sequential games to alter their beliefs in order to achieve

a higher expected utility (EU) [9]. The results showed that a defender was able to

learn more about what kind of attacker they were facing after every game. This

information was used to improve their utility outcomes by updating their beliefs in

the subgames after every round. Figure 19 shows a defender going against an attacker

who they believe may be a nuisance attacker with a belief context of 0.6. Initially

the hyperstrategies in the game are all ineffective as their EUs cannot do better than

the Nash equilibrium mixed strategy (NEMS). As the game progressed their belief

context in the attacker changed along with other payoffs variables to reflect what was

learned about the attacker. This led to a better payoff compared to games where

these updates were not made. This showed how HAT allowed an adaptive strategy

for a defender to be modeled which could then be applied in persistent cyber defense

planning. One thing to point out in this model is that the accomplishment of the

mission is not accounted for in the case of the attacker as they receive no penalty for

not attacking. One way to account for this is to get rid of the “no attack” option for

the attacker but that would change the model of the game and limit the application

of the results.
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Figure 19. Intrusion Detection Game in HAT

Next HAT is used on a CPS SCADA defense model originally modeled in a sequen-

tial game using the extensive game form [54]. In this game the attacker has 4 attacks

at their disposal which are as = sybil, aNC = node compromise, ae = eavesdropping,

aDI = data injection, and a0 = do nothing . The defender has two options which

are defend by cutting off energy, alerting the MTU, and maintenance of the nodes

or < re, ra, rm > and the other option is r0 = do nothing. In this game the attacker

makes the first move, followed by the defender, and followed by the attacker again

to complete the sequence. As shown in Figure 20 initially the attacker only has rs

and rNC available and depending on the action of the defender in the next stage,

the attacker has the options aDI , ae or a0. In the extensive form of the game the

defender can use backwards induction to find the equilibrium strategy sets which are

(as, ae, ae, ae) for the attacker and (< re, ra, rm >,< re, ra, rm >) for the defender.

The attacker’s equilibrium strategy set is interpreted as what the attacker does at

each of the decision nodes. At the first decision node the attacker chooses as and at

the second decision node , starting from left to right on the bottom of the extensive

tree in Figure 20, the attacker performs ae with ae being chosen for the attacker’s

third and fourth decision nodes as well. The defender’s strategy set means they de-

fend at both decision nodes. This boils down to the attacker performs a sybil attack

followed by the defender defending against it. In a final response to this the attacker

performs an eavesdropping attack. Although a system administrator may be able to
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make plans based on these results, this extensive form is not capable of capturing

different perceptions the defender may have of how the attacker might actually play

the game. To accomplish this the game was placed in HAT as seen in Figure 21. In

this 4 × 16 game the NEMS of the full game is the same as that in the extensive

form game which means HAT was able to correctly identify the equilibrium. The

hypergame also has a subgame where the defender perceives the attacker does not

use the action sets (as, ae, ae, ae),(as, ae, ae, aDI),(as, ae, aDI , ae), and (as, ae, aDI , aDI).

This means, that the defender believes the attacker does not try to eavesdrop after

its sybil attack is met with defense. This may be based off prior knowledge that the

attacker may not know how to eavesdrop once their sybil attack is compromised. The

subgame equilibrium shows that the attacker still proceeds with a sybil attack and

that the defender should defend the attack and not expect a follow up attack. The

summary column mixed strategy (CMS) shows the attacker mixes a sybil attack fol-

lowed up by eavesdropping strategy at 23.5% with the strategy of doing nothing after

the sybil attack with 76.5% based on their prior beliefs. This can relieve some stress

from the defender as they know the attacker probably does not resort to an initial

node compromise even if they know they cannot eavesdrop after being defended. This

shows how HAT can incorporate the perceptions of the defender to gain additional

information into the scenario. The issue with this model is that it basically states the

defender should defend against attacks which may be seen as an obvious to a planner.
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Figure 20. Sequential SCADA Game

Figure 21. SCADA Game in HAT

The insider game [46] originally modeled in hypergames using HYPANT also

benefits from HAT analysis. As described earlier this is a two player game between

a system administrator trying to protect a network and an employee acting as an

insider that is trying to exfiltrate data. The available actions to the attacker are

probe for information or do nothing. The defender is capable of incident response or

doing nothing as well. Hypergames are incorporated into the model by adding more

actions into the model that the other player may not be aware of. The first added

action is the strategem which allows the system administrator to trick the insider into

probing false information and exposing themselves to being caught. The paper then
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looks at the hypergame where the insider suspects that the system administrator is

going to use a strategem and then alter their own strategy accordingly by choosing to

do nothing. The last hypergame discussed is the game where the defender employs a

fake or false strategem that uses much less resources than the strategem. The insider

sees the false strategem and chooses to do nothing because they are unaware the

defender has that option. The hypergames proposed did not use utility values, but

instead employed preferred outcome vectors to rank the possible results achieved for

both the defender and the insider. In order to convert this hypergame model into a

hypergame normal form (HNF) model suitable for HAT, utility values were assigned

equal to the ranking of the strategies in reverse order where a lower ranking is the

worst strategy. Table 25 shows the outcome rankings for the insider and the defender.

Note that the insider had outcomes that tied in ranking due to the source material

not clearly distinguishing which outcome was more preferred. This is due to the false

strategem not being available for the insider to consider in all of its hypergames.

These rankings were used as utilities and placed in a hypergame as seen in Figure

22. In the full game it is seen that the equilibrium strategy for the attacker is a

mixed strategy with “Probe” at 32.5% and do “Nothing” at 62.5%. The equilibrium

strategy for the defender is to mix between using a strategem and false strategem

evenly. This is interesting because it shows that the defender should not rely on

incident response but rather deceptive tactics. This kind of numerical information

was not able to be captured by HYPANT alone. This hypergame also contains a

subgame where the defender has a 50% belief context that doing nothing is not an

option for the insider. In this case the best strategy is to use a strategem which is the

same strategy equilibrium strategy found in the original paper for the 1st hypergame.

This shows that HAT is capable of capturing the same information as HYPANT and

more.

86



Table 25. Defender and Insider Outcome Rankings

Figure 22. Insider Game in HAT

4.4 Experimentation

The previous section showed the HAT software calculating accurate results while

running MIP algorithm and how HAT can be used to model cyber defense scenar-

ios. This section focuses back on the Blotto game as CPS model and the wireless

sensor network (WSN) CPS model developed in Chapter III using the cyber defense

modeling framework (CDMF). The models are input into HAT and solved with dif-

ferent configurations. In the Blotto game each player has three resources that must

be distributed across three fronts. The Blotto game is ran multiple times with one

subgame that is kept constant. Also the belief context for this subgame is kept con-

stant at 0.5. The only thing changing is the equilibrium strategy of the full game.

This experiment looks to capture the effects that changing the full game equilibrium

strategy has on the hyperstrategies. An experiment is ran on WSN CPS model that
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consists of switching the row player. Each configuration is ran once with a particular

subgame meant to capture similar information. This is done to see if the decision

maker gains new insight from switching the row player. All the results are analyzed

following the experiment to see if the switch shed light on better strategies for the

network defender.

Blotto Game.

The Blotto game was mentioned earlier as a popular classic game. It is known

for being simple to conceptualize but having complex strategies and being hard to

solve for large instances. Its simple construction allows it to be applied to many

scenarios including cyber defense. For example the Blotto game was used to study

how scarce protective resources could be automatically allocated in a CPS to combat

the asset allocations of an attacker [55]. Blotto games have been researched in regards

to players reasoning about their opponent’s reaction to their strategy and how they

should react to that. The reasoning continues to how the opponent would react to

the player’s reaction. Every step of reasoning is referred to as a k-level [56]. This

idea of planning on how to endlessly react to an opponent’s reactions to the player’s

reactions is not to be confused with hypergame theory that reasons over an opponent’s

perceptions of the game. However these two concepts can be combined to look at

effects of misconceptions in k-level reasoning, although that is not explored in this

research. The Blotto game in HAT allows for additional information to be added

about the perception of an attacker to possibly gain a strategic advantage. In Figure

23 the Blotto game has been added to HAT. This is a two player game with three

fronts and three resources per player. Each number digit in an action represent how

many resources are assigned to particular front. For example the strategy “003”

means 0 resources are assigned to the first and second front while the third front
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receives all three of the resources. The full game strategy in this instance of HAT

is to mix evenly between the three strategies of “120”,“012”, and “201” for both

players. This hypergame also has a subgame where the column player is not aware of

a third front. Using this knowledge the row player can develop a better strategy to

improve their outcome. The resulting hyperstrategies can be seen in Table 26. One

strategy to consider is the MO hypergame strategy because it is fully effective. This

means, that the MO strategy can perform better than the Nash equilibrium mixed

strategy (NEMS) full game strategy in the best case while it cannot perform worse

than NEMS in the worst case. The PS and WS are only partially effective strategies

because their EUs is are above that of the NEMS, but both strategies are at risk of

being outguessed and getting utilities lower than that of the NEMS worst case.

Figure 23. Blotto Game Strategy# 1

Table 26. Hyperstrategies # 1

Hyperstrategy EU G

MO 0.25 0

PS 0.25 -0.5

WS 0.125 -0.25

NEMS 0 0

The next Blotto game in Figure 24 features a pure strategy for the full game

where the each player plays the strategy “111”. In this strategy each player places a

resource at one of the fronts. In this game there are no fully effective hyperstrategies
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as seen in Table 27. Instead all the hyperstrategies are only partially effective as they

do worse that the NEMS in the worst case scenario. The MO strategy is still better

than PS or WS hyperstrategy as they have worse case scenarios that are worse and

no real benefit on their mixed strategies.

Figure 24. Blotto Game Strategy# 2

Table 27. Hyperstrategies # 2

Hyperstrategy EU G

NEMS 0.25 0.25

MO 0.25 0.0

WS 0.25 -0.25

PS 0.25 -0.5

In the 3rd Blotto game in Figure 25 the row player and the column player are

playing different strategies. The row player plays the strategy “111” while the column

player mixes evenly between the strategies “120”, “012”, and “201”. Table 28 shows

that in this game MO is not an effective hypergame strategy and the player may as

well play the NEMS which happens to be the same strategy. In this game the PS

strategy and the WS are both partially effective with PS strategy having a higher EU

at the risk of being outguessed.
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Figure 25. Blotto Game Strategy# 3

Table 28. Hyperstrategies # 3

Hyperstrategy EU G

PS 0.25 -0.5

WS 0.125 -0.25

NEMS 0.0 0.0

MO 0.0 0.0

The 4th Blotto game in Figure 26 is similar to the 3rd game with the row player

playing the strategy “111” and the column player also mixes evenly between three

actions again except the actions are different this time. The column player’s strategy

is evenly mixed between “210”, “021”, and “102”. Table 29 shows how all the hyper-

strategies are ineffective against the NEMS. MO is the next best hyperstrategy as it

has the best EU and best worst case scenario compared to PS and WS. The WS is

the next hyperstrategy to consider, and PS is the worst hyperstrategy out of them

with its EU being equal to the WS’s worst case scenario.

91



Figure 26. Blotto Game Strategy# 4

Table 29. Hyperstrategies # 4

Hyperstrategy EU G

NEMS 0.25 0.25

MO 0.25 0.0

WS 0.2083 0.1667

PS 0.1667 0.0333

These Blotto games all demonstrate how hypergames can be utilized in a cyber

scenario where a defender is using deception to hide certain fronts from the attacker.

This extra information allows the defender to put together a plan that takes these

beliefs into account to formulate better results than those obtained from the NEMS.

This case is most compelling in the Blotto game in 23 because the decision maker is

presented with the MO option which is fully effective against the NEMS. Therefore

this may be a strategy that the row player might want to consider since the row player

has nothing to lose with the strategy and can only gain. A decision maker may want

to push the column player towards playing with the select equilibrium mixed strategy

in the first Blotto game in Figure 23.
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WSN CPS Model.

The WSN CPS model developed in Chapter III modeled a network administrator

protecting a wireless nodes from compromise by an attacker. Typically games are

analyzed from the defender’s perspective so the results of the game can instruct the

defender how to act. This experiment first runs the game with the defender as the

row player with a subgame where the attacker is aggressive and does not consider no

action or eavesdropping attacks. The subgame has a belief context of 0.3 showing

a slight belief that the attacker is aggressive. Figure 27 shows the results from that

game. The game shows that the row player believes the attacker may try to use the

eavesdrop, DoS, or replay attack. Table 30 shows the values of the hyperstrategies

of this game. MO is partially effective and has the best EU but it is a very risky

strategy leaving the defender open to eavesdropping and replay attacks and having

a worst case utility of -8. In this case the defender may want to simply go with the

NEMS as all other hyperstrategies are ineffective compared to it. The problem with

this strategy is that it calls the defender to ignore the possibility of replay attacks

that the defender believes the attacker may attempt in the subgame. PS also ignores

the possibility of DoS attacks while also being ineffective. This leaves the WS. While

this game is ineffective against the NEMS it takes into account the belief that the

attacker may be playing a subgame and places some percentage in all three of the

possible necessary defenses of eavesdrop, DoS, and replay defense. This calls into

question the way these games can be interpreted in a cyber scenario. As stated in the

“Security” section of Chapter II defenses in a security system are ran concurrently.

This mean the defender employs defenses against all the attacks at once and does

not randomize over a mixed strategy to achieve an equilibrium. This is because a

network administrator cannot risk leaving any avenue open. So in this case the results

of the hypergame cannot be applied as they are typically to other non-cyber defense
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scenarios. In this case it is best to look at the hyperstrategies as a guide of emphasis

on actions. For example looking at the WS strategy in Figure 27 it suggest that

defender should expect a DoS attack the most, followed by eavesdropping, and to

an even lesser extent replay attacks. Defenses assigned 0 probability, which in this

case is the byzantine attack, should be the least expected. At the end of the day the

defender protects against all potential attacks but based off the WS, which takes into

account all subgames and belief contexts, the defender knows what degree to expect

these attacks.

Figure 27. WSN CPS Model: Defender

Table 30. WSN CPS Model: Defender Hyperstrategies

Hyperstrategy EU G

MO -3.0159 -8.0

NEMS -3.1401 -3.1401

WS -3.2019 -6.2751

PS -3.346 -3.7168

The next game run of the WSN CPS model in HAT has the attacker as the row

player. In the previous game in Figure 27 the attacker was suspected to be aggressive

and not considering no action or eavesdropping in the subgame. This led the attacker

to favor the replay and DoS attacks. The subgame in the attacker row player game

checks to see if the attacker would still attempt these actions if the defender left

these avenues open. Therefore the subgame has the defender not considering a replay
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defense or a DoS defense. The belief context is still set at 0.3. The results for this

game are seen in Figure 28 and the hyperstrategies are seen in Table 31. The MO

is the only partially effective strategy and it does not even have the worst possible

outcome. Attackers are different than defenders in that they sometimes choose to do

one attack at a time or all at once because sometimes different attacks can interfere

with each other. Therefore the interpretation of the mixed strategies as randomly

mixing between actions works better with the attacker. The MO recommends that

the attacker try a DoS attack although this strategy requires a strong belief g value

of at least 0.89867 in the subgames. Anything less than that the attacker should

mix their strategy between DoS attacks and eavesdropping as seen in the NEMS.

An interesting thing to notice in this game is that if the defender opens themselves

up to the replay attack and DoS attacks the attacker would rather abandon replay

attacks all together and attempt Byzantine attacks with 0.875 compared to the 0.125

percentage for DoS attacks. This is interesting as the defender would expect the

attacker to exploit the lack of a replay defense with a replay attack. This contrast the

defenders CPS game where Byzantine attacks seemed to be the least of their worries

even with an aggressive attacker. This information can be used by the defender to

ensure that they do not slack on Byzantine defense. However since the Byzantine

defense can be seen as expensive the defender can ensure the replay attack defense is

solid which is cheaper as it seems that also deters the attacker from using a Byzantine

attack.

Figure 28. WSN CPS Model: Defender
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Table 31. WSN CPS Model: Attacker Hyperstrategies

Hyperstrategy EU G

MO -0.2756 -5.0

NEMS -0.7543 -0.7543

WS -1.1254 -1.7045

PS -1.9912 -3.068

4.5 Summary of Experiments

In this chapter HAT is validated against classical models and its application to

cyber defense scenarios are shown. It is also shown in the experiments that when

analyzing a hypergame in its normal form it is important to recognize the equilibrium

strategy being used to make the calculations. This is because, when other factors

are kept constant, changing equilibrium strategies in a hypergame also changes the

viability of its hyperstrategies. These hyperstrategies may go from fully effective, to

partially effective, to completely ineffective. This chapter also shows how looking at

a game from the perspective of the attacker can provide additional insight for the

defender to use in their planning. The following chapter discusses the conclusion of

these findings.
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V. Conclusion

The goal of this research is to further develop the field of hypergame theory,

specifically as it pertains to cyber systems by developing an improved modeling and

analysis environment for hypergame models. The goal of developing a new hypergame

model and analyzing it with AFIT’s Hypergame Analysis Tool (HAT) software’s new

Nash equilibrium method has been achieved by accomplishing the objectives laid out

in Chapter I. This is done through a thorough study of game theory and hyper-

game theory literature and further development of the hypergame software package

in relation to cyber-physical sytems (CPS). HAT is augmented to calculate Nash

equilibriums (NE) using mixed integer programming (MIP). This implementation of

MIP improves the processing of different equilibrium strategies to be displayed in

HAT. HAT is validated against classical games and hypergames as well. HAT is also

further improved by streamlining the task of calculating belief contexts in the hy-

pergame making the overall software more robust and dynamic. More cyber-related

games are added into HAT for analysis including an insider game, supervisory control

and data acquisition (SCADA) game, and the Blotto game. This satisfies the first

objective. On top of the established games a new model for a wireless sensor network

(WSN) cyber-physical systems (CPS) is developed using the cyber defense modeling

framework (CDMF). The CDMF model improves on other models in its simplicity

while not being too generic. Another key benefit of CDMF is that it factors in the

idea of mission success and failure into the utility calculations. This ensures that the

attacker and the defender have incentives to achieve their goals and not avoid specific

strategies due to fear of cost. The CDMF model’s development completes the second

objective.

The results from the experiments in Chapter IV show that changing different fac-

tors of the hypergame do in fact change the preferred hyperstrategies. By applying
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these hyperstrategies a planner can hope to increase their expected utility (EU) over

that of the Nash equilibrium mixed strategy (NEMS) at the risk of being outguessed.

The results from the WSN CPS experiments show that changing the player can pro-

vide additional insight into developing a strategy for the defender. The experiments

also called into question the traditional interpretation of mixed strategies in regards

to cyber defense models. Since a defender is likely to always take every defensive

action the mixed strategy should not be seen as telling the defender what actions to

take. Instead it should let the defender know what defenses they can expect to use

the most. This can help the allocation of resources and additional preparation while

still defending against all other threats. The discovery of this information through

unconventional analysis techniques accomplishes the task set out in the third objec-

tive.

5.1 Future Work

This paper explored the effects on hyperstrategies when the full game NE strategy

was changed. However the compounded effects of changing the subgame NE strategies

along with the full game NEMS still needs to be researched. This may allow decision

makers to find strategies that are even more tailored to their specific circumstances

and meet specific requirements. Also more research into a possible pattern in how the

equilibrium changes affect the hypergame strategies would allow a planner to better

anticipate analysis results.

The HAT software can use some future improvements to make it the premier

hypergame modeling software. The HAT software would benefit from additional

methods of calculating the NE. Different methods of calculating the NE can lead

to speed improvements in the software as well as different strategies for the cyber

defender. The addition of more NE methods furthers HAT software development
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into a fully realized hypergame suite. Also the MIP implementation into HAT is

capable of finding optimal strategies based off of user defined criteria. This feature

can prove useful by placing constraints on the size of a support and researching its

benefits.

Another future research consideration is the addition of a temporal framework

into the HAT software. The benefits of this addition to the software have been

documented to provide the ability to model timing into a hypergame and sequential

play [57]. This addition can allow for even more dynamic and accurate models of

cyber defense interactions unique to today’s war-fighter.

5.2 Final Remarks

The insight and improved tools presented in this thesis research allows the war-

fighter to quickly construct a realistic model of a specific cyber scenario and gain

insight into how the attacker should be approached to achieve the best outcome.

Given that there are often misconceptions in real world cyber scenarios these tools

and methods can help the cyber defenders of the Air Force military and the world

make more informed decisions, instead of having to ignore the additional information

at hand. Overall this research has been able to show how new techniques in hypergame

analysis are able to draw more information from the same game scenario and provide

a strategic advancement for the decision maker.
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Appendix A. Lemke-Howson Calculation

This appendix shows the calculation of the mixed strategy Nash equilibrium using

the Lemke-Howson Method discussed in Chapter II.

For this example, consider the two player m× n game in Table 32.

The algorithm starts by generating two matrices for each player which are matrix

A and B corresponding to player A and B’s utilities respectively.

A =

∣∣∣∣∣∣∣∣∣∣
2 4 0

0 0 3

3 2 2

∣∣∣∣∣∣∣∣∣∣
B =

∣∣∣∣∣∣∣∣∣∣
3 2 0

2 4 2

0 0 4

∣∣∣∣∣∣∣∣∣∣
The mixed strategies found by this algorithm will be in the form of a m sized

vector, x, for player A and a n sized vector, y, for player B. According to the algorithm

the constraints for Nash equilibrium solution areAiy ≤ 1 and xTBj ≤ 1. Non-negative

slack variables r and s are used to turn these inequalities into the equalities Ay+r = 1

and BTx + s = 1. Now set up the two tableaux that solve for the slack variables as

seen in tableau A and tableau B.

r1 = 1− 2y4 − 4y5 (A1)

r2 = 1− 3y6 (A2)

r3 = 1− 3y4 − 2y5 − 2y6 (A3)

Table 32. Lemke-Howson Example Game

Player A \Player B 4 5 6
1 (2, 3) (4,2) (0, 0)
2 (0, 2) (0,4) (3,2)
3 (3,0) (2, 0) (2,4)
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s4 = 1− 3x1 − 2x2 (B1)

s5 = 1− 2x1 − 4x2 − 2x3 (B2)

s6 = 1− 4x3 (B3)

In this algorithm x and r are seen as pairs along with y and s and labels refer to the

index of a variable solved for in an equality. For example the equality r1 = 1−2y4−4y5

provides the label 1 from the index of r. The goal of the algorithm is to start with

all the labels and then pivot the variables until all the labels are covered again by the

union of the two tableaux. For this example the labels are 1 through 6 and as stated

earlier the algorithm starts with all the labels. A pivot is performed by choosing a

random index to solve for which will cause a label to be lost. The lost label becomes

the new index to solve for and this is repeated until all the labels are accounted for.

For example If the previous equality is solved for y4 it becomes y4 = 1
2
− r1

2
− 2y5. In

this equality, the label is now 4 and the label 1 is lost. When choosing which equality

to solve an index for the general rule is to choose the equality with a minimum value

for that index. If there is a tie than randomly pick one. To avoid unending loops

if the tie is formed again break the tie differently. The first index to pivot can be

random and this example solves for x1 in tableau B. The minimum value rule means

use equation B1. This creates the new tableau B‘.

x1 =
1

3
− 2

3
x2 −

1

3
s4 (B‘1)

s5 =
1

3
− 8

3
x2 − 2x3 +

2

3
s4 (B‘2)

s6 = 1− 4x3 (B‘3)
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After pivoting on x1 and plugging in the variable for the other equations, label 4

is lost since there is no longer an equation solving for a variable with an index of 4

which used to be s4. In order to get it back, pivot on y4 in tableau A because y and

s are pairs. The minimum value rule dictates that the A3 be used. This creates the

new tableau A‘.

r1 =
1

3
− 10

3
y5 +

2

3
y6 +

1

3
r3 (A‘1)

r2 = 1− 3y6 (A‘2)

y4 =
1

3
− 2

3
y5 −

2

3
y6 −

1

3
r3 (A‘3)

With tableau A updated, label 3 is now lost . In order to get it back, pivot on x3

in B‘3 to get tableau B“.

x1 =
1

3
− 2

3
x2 −

1

3
s4 (B“1)

s5 = −1

6
− 8

3
x2 +

2

3
s4 −

1

2
s6 (B“2)

x3 =
1

4
− 1

4
s6 (B“3)

After updating tableau B label 6 is lost so the next pivot is y6 in A‘2 to get tableau

A“.

r1 =
5

9
− 10

3
y5 −

2

9
r2 +

1

3
r3 (A“1)

y6 =
1

3
− 1

3
r2 (A“2)

y4 =
1

9
− 2

3
y5 +

2

9
r2 −

1

3
r3 (A“3)
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Label 2 was lost so the next pivot is x2 on B“2 to get tableau B“‘.

x1 =
7

24
− 5

12
s4 +

1

8
s6 +

1

4
s5 (B“‘1)

x2 =
1

16
+

1

8
s4 −

3

16
s6 −

3

8
s5 (B“‘2)

x3 =
1

4
− 1− 4x3 (B“‘3)

Now label 5 is gone, so it needs to be brought back by solving for y5 in A“1 to get

tableau A“‘.

y5 =
1

6
− 1

15
r2 +

1

10
r3 −

3

10
r1 (A“‘1)

y6 =
1

3
− 1

3
r2 (A“‘2)

y4 =
12

45
r2 −

6

15
r3 +

1

5
r1 (A“‘3)

After that pivot all the labels are accounted for with the union of both tableau.

Now the mixed equilibrium can be found by solving for the variables in the equation.

This is done by assigning a 0 to all the slack variables. The result of this can be seen

in equation 9.
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x1 = 7
24

(9)

x2 = 1
16

x3 = 1
4

y5 = 1
6

y6 = 1
3

y4 = 0

These values need to be normalized by dividing each value by the sum of its entire

vector. The final values are x1 = 0.482, x2 = 0.103, x3 = 0.413 for the x vector and

y4 = 0, y5 = 0.333, y6 = 0.667 for the y vector.
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Appendix B. Wireless Sensor Network Cyber Physical
System Game

package com.nicholaskovach.jhalf.hypergame.generators.games;

import com.nicholaskovach.jhalf.components.RandomIDUtilities;

import com.nicholaskovach.jhalf.components.interfaces.jaxb.GameData;

import com.nicholaskovach.jhalf.components.interfaces.jaxb.ObjectFactory;

import com.nicholaskovach.jhalf.components.interfaces.jaxb.OpponentStrategy;

import com.nicholaskovach.jhalf.components.interfaces.jaxb.Outcome;

import com.nicholaskovach.jhalf.components.interfaces.jaxb.Player;

import com.nicholaskovach.jhalf.components.interfaces.jaxb.PlayerStrategy;

import com.nicholaskovach.jhalf.components.interfaces.jaxb.Variable;

import com.nicholaskovach.jhalf.components.interfaces.jaxb.VariableUpdate;

import com.nicholaskovach.jhalf.hypergame.generators.GameGenerator;

import java.math.BigDecimal;

/∗∗

∗

∗ @author nskovach

∗/

public class CyberPhysicalWirelessSensorGameGenerator extends GameGenerator {

public CyberPhysicalWirelessSensorGameGenerator() {

}

public GameData generateGameDataObject() {

// Get a random ID generator/tracker

RandomIDUtilities rID = new RandomIDUtilities(RandomIDUtilities.BYTES8);

// Factory required to create game:

ObjectFactory factory = new ObjectFactory();

// Create the game:

GameData gameData = factory.createGameData();

gameData.setDisplayName(”CPS Wireless Sensor”);

gameData.setUID(rID.getRandomIDForSession());

gameData.setBeliefInSubLevels(BigDecimal.valueOf(.3));

boolean reverse = true;

boolean hideReplayD = true;

boolean hideEavesD = false;

boolean hideDosD = true;

boolean hideByzD = false;

boolean hideNoD = false;

boolean hideReplayA = false;

boolean hideEavesA = false;

boolean hideDosA = false;
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boolean hideByzA = false;

boolean hideNoA = false;

/∗

Damage caused by specfic attack on against specific defense

DAMAGE TABLE

|Replay Attack|Eavesdropping Attack|DOS|Byzantine Attack| No Attack|

Replay Defense | 0 | 2 | 4 | 2 | 0 |

Eavesdropping Defense | 2 | 0 | 6 | 6 | 0 |

DOS Defense | 6 | 6 | 0 | 4 | 0 |

Byzantine Defense | 4 | 4 | 2 | 0 | 0 |

No Defense | 12 | 12 |12 | 12 | 0 |

∗/

double [][] damage = new double[][]{{0,2,4,2,0},

{2,0,6,6,0},

{6,6,0,4,0},

{4,4,2,0,0},

{12,12,12,12,0}

};

/∗Mission Accomplished/Failed

If the attacker doesn’t cause enough damage then he sees a penalty for not completing their mission.

If the defender stops the attacker from getting a certain damage then they get a bonus

∗/

int damagemin = 2;

int damagemax = 3;

int bonus =5;

int penalty = 3;

int [][] missionAccomplished = new int [5][5];

int [][] missionFailed = new int [5][5];

for (int i = 0;i<5;i++){

for(int k = 0;k<5;k++){

if (damage[i][k] < damagemin ){

missionFailed[ i ][ k] = penalty;

}else{

missionFailed[ i ][ k] = penalty;

}

if (damage[i][k] < damagemax ){

missionAccomplished[i][k] = bonus;

}else{

missionAccomplished[i][k] = 0;

}

}

}

// Create the first player:

Player pA = factory.createPlayer();
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pA.setUID(rID.getRandomIDForSession());

pA.setDisplayName(”Defender”);

pA.setRowPlayer(!reverse);

gameData.getPlayer().add(pA);

// Player A has five strategies ”

PlayerStrategy replayD = factory.createPlayerStrategy();

replayD.setDisplayName(”Replay Def.”);

replayD.setUID(rID.getRandomIDForSession());

replayD.setHidden(hideReplayD);

replayD.setPlayer(pA);

pA.getPlayerStrategy().add(replayD);

PlayerStrategy eavesD = factory.createPlayerStrategy();

eavesD.setDisplayName(”Eavesdropping Def.”);

eavesD.setUID(rID.getRandomIDForSession());

eavesD.setHidden(hideEavesD);

eavesD.setPlayer(pA);

pA.getPlayerStrategy().add(eavesD);

PlayerStrategy dosD = factory.createPlayerStrategy();

dosD.setDisplayName(”DOS Def.”);

dosD.setUID(rID.getRandomIDForSession());

dosD.setHidden(hideDosD);

dosD.setPlayer(pA);

pA.getPlayerStrategy().add(dosD);

PlayerStrategy byzD = factory.createPlayerStrategy();

byzD.setDisplayName(”Byzantine Def.”);

byzD.setUID(rID.getRandomIDForSession());

byzD.setHidden(hideByzD);

byzD.setPlayer(pA);

pA.getPlayerStrategy().add(byzD);

PlayerStrategy noD = factory.createPlayerStrategy();

noD.setDisplayName(”No Defense”);

noD.setUID(rID.getRandomIDForSession());

noD.setHidden(hideNoD);

noD.setPlayer(pA);

pA.getPlayerStrategy().add(noD);

// Create the second player:

Player pB = factory.createPlayer();

pB.setUID(rID.getRandomIDForSession());

pB.setDisplayName(”Attacker”);

pB.setRowPlayer(reverse);

gameData.getPlayer().add(pB);

// Player B has five strategies ”

PlayerStrategy replayA = factory.createPlayerStrategy();

replayA.setDisplayName(”Replay Attack”);

replayA.setUID(rID.getRandomIDForSession());

replayA.setHidden(hideReplayA);
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replayA.setPlayer(pB);

pB.getPlayerStrategy().add(replayA);

PlayerStrategy eavesA = factory.createPlayerStrategy();

eavesA.setDisplayName(”Eavesdropping”);

eavesA.setUID(rID.getRandomIDForSession());

eavesA.setHidden(hideEavesA);

eavesA.setPlayer(pA);

pB.getPlayerStrategy().add(eavesA);

PlayerStrategy dosA = factory.createPlayerStrategy();

dosA.setDisplayName(”DOS”);

dosA.setUID(rID.getRandomIDForSession());

dosA.setHidden(hideDosA);

dosA.setPlayer(pB);

pB.getPlayerStrategy().add(dosA);

PlayerStrategy byzA = factory.createPlayerStrategy();

byzA.setDisplayName(”Byzantine Attack”);

byzA.setUID(rID.getRandomIDForSession());

byzA.setHidden(hideByzA);

byzA.setPlayer(pB);

pB.getPlayerStrategy().add(byzA);

PlayerStrategy noA = factory.createPlayerStrategy();

noA.setDisplayName(”No Attack”);

noA.setUID(rID.getRandomIDForSession());

noA.setHidden(hideNoA);

noA.setPlayer(pB);

pB.getPlayerStrategy().add(noA);

// Setup the opponent strategeies:

// Player 1: utility = missionAccomplished − damage − defensiveCost

//replayA

OpponentStrategy osreplayA = factory.createOpponentStrategy();

osreplayA.setUID(rID.getRandomIDForSession());

osreplayA.setHidden(false);

osreplayA.setPlayerStrategy(replayA);

Outcome oc1 = factory.createOutcome();

oc1.setHidden(false) ;

oc1.setPlayerStrategy(replayD);

oc1. setUtility (”{var replayD replayA missionD} − {var replayD replayA damage} − {var replayDcost}”);

Outcome oc2 = factory.createOutcome();

oc2.setHidden(false) ;

oc2.setPlayerStrategy(eavesD);

oc2. setUtility (”{var eavesD replayA missionD}−{var eavesD replayA damage} − {var eavesDcost}”);

Outcome oc3 = factory.createOutcome();

oc3.setHidden(false) ;

oc3.setPlayerStrategy(dosD);

oc3. setUtility (”{var dosD replayA missionD}−{var dosD replayA damage} − {var dosDcost}”);
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Outcome oc4 = factory.createOutcome();

oc4.setHidden(false) ;

oc4.setPlayerStrategy(byzD);

oc4. setUtility (”{var byzD replayA missionD}−{var byzD replayA damage} − {var byzDcost}”);

Outcome oc5 = factory.createOutcome();

oc5.setHidden(false) ;

oc5.setPlayerStrategy(noD);

oc5. setUtility (”{var noD replayA missionD}−{var noD replayA damage} − {var noDcost}”);

osreplayA.getOutcome().add(oc1);

osreplayA.getOutcome().add(oc2);

osreplayA.getOutcome().add(oc3);

osreplayA.getOutcome().add(oc4);

osreplayA.getOutcome().add(oc5);

pA.getOpponentStrategy().add(osreplayA);

//eavesA

osreplayA = factory.createOpponentStrategy();

osreplayA.setUID(rID.getRandomIDForSession());

osreplayA.setHidden(false);

osreplayA.setPlayerStrategy(eavesA);

oc1 = factory.createOutcome();

oc1.setHidden(false) ;

oc1.setPlayerStrategy(replayD);

oc1. setUtility (”{var replayD eavesA missionD}−{var replayD eavesA damage} − {var replayDcost}”);

oc2 = factory.createOutcome();

oc2.setHidden(false) ;

oc2.setPlayerStrategy(eavesD);

oc2. setUtility (”{var eavesD eavesA missionD}−{var eavesD eavesA damage} − {var eavesDcost}”);

oc3 = factory.createOutcome();

oc3.setHidden(false) ;

oc3.setPlayerStrategy(dosD);

oc3. setUtility (”{var dosD eavesA missionD}−{var dosD eavesA damage} − {var dosDcost}”);

oc4 = factory.createOutcome();

oc4.setHidden(false) ;

oc4.setPlayerStrategy(byzD);

oc4. setUtility (”{var byzD eavesA missionD}−{var byzD eavesA damage} − {var byzDcost}”);

oc5 = factory.createOutcome();

oc5.setHidden(false) ;

oc5.setPlayerStrategy(noD);

oc5. setUtility (”{var noD eavesA missionD}−{var noD eavesA damage} − {var noDcost}”);

osreplayA.getOutcome().add(oc1);

osreplayA.getOutcome().add(oc2);

osreplayA.getOutcome().add(oc3);

osreplayA.getOutcome().add(oc4);

osreplayA.getOutcome().add(oc5);
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pA.getOpponentStrategy().add(osreplayA);

//dosA

osreplayA = factory.createOpponentStrategy();

osreplayA.setUID(rID.getRandomIDForSession());

osreplayA.setHidden(false);

osreplayA.setPlayerStrategy(dosA);

oc1 = factory.createOutcome();

oc1.setHidden(false) ;

oc1.setPlayerStrategy(replayD);

oc1. setUtility (”{var replayD dosA missionD}−{var replayD dosA damage} − {var replayDcost}”);

oc2 = factory.createOutcome();

oc2.setHidden(false) ;

oc2.setPlayerStrategy(eavesD);

oc2. setUtility (”{var eavesD dosA missionD}−{var eavesD dosA damage} − {var eavesDcost}”);

oc3 = factory.createOutcome();

oc3.setHidden(false) ;

oc3.setPlayerStrategy(dosD);

oc3. setUtility (”{var dosD dosA missionD}−{var dosD dosA damage} − {var dosDcost}”);

oc4 = factory.createOutcome();

oc4.setHidden(false) ;

oc4.setPlayerStrategy(byzD);

oc4. setUtility (”{var byzD dosA missionD}−{var byzD dosA damage} − {var byzDcost}”);

oc5 = factory.createOutcome();

oc5.setHidden(false) ;

oc5.setPlayerStrategy(noD);

oc5. setUtility (”{var noD dosA missionD}−{var noD dosA damage} − {var noDcost}”);

osreplayA.getOutcome().add(oc1);

osreplayA.getOutcome().add(oc2);

osreplayA.getOutcome().add(oc3);

osreplayA.getOutcome().add(oc4);

osreplayA.getOutcome().add(oc5);

pA.getOpponentStrategy().add(osreplayA);

//byzA

osreplayA = factory.createOpponentStrategy();

osreplayA.setUID(rID.getRandomIDForSession());

osreplayA.setHidden(false);

osreplayA.setPlayerStrategy(byzA);

oc1 = factory.createOutcome();

oc1.setHidden(false) ;

oc1.setPlayerStrategy(replayD);

oc1. setUtility (”{var replayD byzA missionD}−{var replayD byzA damage} − {var replayDcost}”);

oc2 = factory.createOutcome();

oc2.setHidden(false) ;

oc2.setPlayerStrategy(eavesD);
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oc2. setUtility (”{var eavesD byzA missionD}−{var eavesD byzA damage} − {var eavesDcost}”);

oc3 = factory.createOutcome();

oc3.setHidden(false) ;

oc3.setPlayerStrategy(dosD);

oc3. setUtility (”{var dosD byzA missionD}−{var dosD byzA damage} − {var dosDcost}”);

oc4 = factory.createOutcome();

oc4.setHidden(false) ;

oc4.setPlayerStrategy(byzD);

oc4. setUtility (”{var byzD byzA missionD}−{var byzD byzA damage} − {var byzDcost}”);

oc5 = factory.createOutcome();

oc5.setHidden(false) ;

oc5.setPlayerStrategy(noD);

oc5. setUtility (”{var noD byzA missionD}−{var noD byzA damage} − {var noDcost}”);

osreplayA.getOutcome().add(oc1);

osreplayA.getOutcome().add(oc2);

osreplayA.getOutcome().add(oc3);

osreplayA.getOutcome().add(oc4);

osreplayA.getOutcome().add(oc5);

pA.getOpponentStrategy().add(osreplayA);

//noA

osreplayA = factory.createOpponentStrategy();

osreplayA.setUID(rID.getRandomIDForSession());

osreplayA.setHidden(false);

osreplayA.setPlayerStrategy(noA);

oc1 = factory.createOutcome();

oc1.setHidden(false) ;

oc1.setPlayerStrategy(replayD);

oc1. setUtility (”{var replayD noA missionD}−{var replayD noA damage} − {var replayDcost}”);

oc2 = factory.createOutcome();

oc2.setHidden(false) ;

oc2.setPlayerStrategy(eavesD);

oc2. setUtility (”{var eavesD noA missionD}−{var eavesD noA damage} − {var eavesDcost}”);

oc3 = factory.createOutcome();

oc3.setHidden(false) ;

oc3.setPlayerStrategy(dosD);

oc3. setUtility (”{var dosD noA missionD}−{var dosD noA damage} − {var dosDcost}”);

oc4 = factory.createOutcome();

oc4.setHidden(false) ;

oc4.setPlayerStrategy(byzD);

oc4. setUtility (”{var byzD noA missionD}−{var byzD noA damage} − {var byzDcost}”);

oc5 = factory.createOutcome();

oc5.setHidden(false) ;

oc5.setPlayerStrategy(noD);
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oc5. setUtility (”{var noD noA missionD}−{var noD noA damage} − {var noDcost}”);

osreplayA.getOutcome().add(oc1);

osreplayA.getOutcome().add(oc2);

osreplayA.getOutcome().add(oc3);

osreplayA.getOutcome().add(oc4);

osreplayA.getOutcome().add(oc5);

pA.getOpponentStrategy().add(osreplayA);

// Player 2: utility = damage − cost − missionFailed

//replayD

osreplayA = factory.createOpponentStrategy();

osreplayA.setUID(rID.getRandomIDForSession());

osreplayA.setHidden(false);

osreplayA.setPlayerStrategy(replayD);

oc1 = factory.createOutcome();

oc1.setHidden(false) ;

oc1.setPlayerStrategy(replayA);

oc1. setUtility (”{var replayD replayA damage} − {var replayAcost}−{var replayD replayA missionA}”);

oc2 = factory.createOutcome();

oc2.setHidden(false) ;

oc2.setPlayerStrategy(eavesA);

oc2. setUtility (”{var replayD eavesA damage} − {var eavesAcost}−{var replayD eavesA missionA}”);

oc3 = factory.createOutcome();

oc3.setHidden(false) ;

oc3.setPlayerStrategy(dosA);

oc3. setUtility (”{var replayD dosA damage} − {var dosAcost}−{var replayD dosA missionA}”);

oc4 = factory.createOutcome();

oc4.setHidden(false) ;

oc4.setPlayerStrategy(byzA);

oc4. setUtility (”{var replayD byzA damage} − {var byzAcost}−{var replayD byzA missionA}”);

oc5 = factory.createOutcome();

oc5.setHidden(false) ;

oc5.setPlayerStrategy(noA);

oc5. setUtility (”{var replayD noA damage} − {var noAcost}−{var replayD noA missionA}”);

osreplayA.getOutcome().add(oc1);

osreplayA.getOutcome().add(oc2);

osreplayA.getOutcome().add(oc3);

osreplayA.getOutcome().add(oc4);

osreplayA.getOutcome().add(oc5);

pB.getOpponentStrategy().add(osreplayA);

//eavesD

osreplayA = factory.createOpponentStrategy();

osreplayA.setUID(rID.getRandomIDForSession());

osreplayA.setHidden(false);

osreplayA.setPlayerStrategy(eavesD);
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oc1 = factory.createOutcome();

oc1.setHidden(false) ;

oc1.setPlayerStrategy(replayA);

oc1. setUtility (”{var eavesD replayA damage} − {var replayAcost}−{var eavesD replayA missionA}”);

oc2 = factory.createOutcome();

oc2.setHidden(false) ;

oc2.setPlayerStrategy(eavesA);

oc2. setUtility (”{var eavesD eavesA damage} − {var eavesAcost}−{var eavesD eavesA missionA}”);

oc3 = factory.createOutcome();

oc3.setHidden(false) ;

oc3.setPlayerStrategy(dosA);

oc3. setUtility (”{var eavesD dosA damage} − {var dosAcost}−{var eavesD dosA missionA}”);

oc4 = factory.createOutcome();

oc4.setHidden(false) ;

oc4.setPlayerStrategy(byzA);

oc4. setUtility (”{var eavesD byzA damage} − {var byzAcost}−{var eavesD byzA missionA}”);

oc5 = factory.createOutcome();

oc5.setHidden(false) ;

oc5.setPlayerStrategy(noA);

oc5. setUtility (”{var eavesD noA damage} − {var noAcost}−{var eavesD noA missionA}”);

osreplayA.getOutcome().add(oc1);

osreplayA.getOutcome().add(oc2);

osreplayA.getOutcome().add(oc3);

osreplayA.getOutcome().add(oc4);

osreplayA.getOutcome().add(oc5);

pB.getOpponentStrategy().add(osreplayA);

//dosD

osreplayA = factory.createOpponentStrategy();

osreplayA.setUID(rID.getRandomIDForSession());

osreplayA.setHidden(false);

osreplayA.setPlayerStrategy(dosD);

oc1 = factory.createOutcome();

oc1.setHidden(false) ;

oc1.setPlayerStrategy(replayA);

oc1. setUtility (”{var dosD replayA damage} − {var replayAcost}−{var dosD replayA missionA}”);

oc2 = factory.createOutcome();

oc2.setHidden(false) ;

oc2.setPlayerStrategy(eavesA);

oc2. setUtility (”{var dosD eavesA damage} − {var eavesAcost}−{var dosD eavesA missionA}”);

oc3 = factory.createOutcome();

oc3.setHidden(false) ;

oc3.setPlayerStrategy(dosA);

oc3. setUtility (”{var dosD dosA damage} − {var dosAcost}−{var dosD dosA missionA}”);
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oc4 = factory.createOutcome();

oc4.setHidden(false) ;

oc4.setPlayerStrategy(byzA);

oc4. setUtility (”{var dosD byzA damage} − {var byzAcost}−{var dosD byzA missionA}”);

oc5 = factory.createOutcome();

oc5.setHidden(false) ;

oc5.setPlayerStrategy(noA);

oc5. setUtility (”{var dosD noA damage} − {var noAcost}−{var dosD noA missionA}”);

osreplayA.getOutcome().add(oc1);

osreplayA.getOutcome().add(oc2);

osreplayA.getOutcome().add(oc3);

osreplayA.getOutcome().add(oc4);

osreplayA.getOutcome().add(oc5);

pB.getOpponentStrategy().add(osreplayA);

//byzD

osreplayA = factory.createOpponentStrategy();

osreplayA.setUID(rID.getRandomIDForSession());

osreplayA.setHidden(false);

osreplayA.setPlayerStrategy(byzD);

oc1 = factory.createOutcome();

oc1.setHidden(false) ;

oc1.setPlayerStrategy(replayA);

oc1. setUtility (”{var byzD replayA damage} − {var replayAcost}−{var byzD replayA missionA}”);

oc2 = factory.createOutcome();

oc2.setHidden(false) ;

oc2.setPlayerStrategy(eavesA);

oc2. setUtility (”{var byzD eavesA damage} − {var eavesAcost}−{var byzD eavesA missionA}”);

oc3 = factory.createOutcome();

oc3.setHidden(false) ;

oc3.setPlayerStrategy(dosA);

oc3. setUtility (”{var byzD dosA damage} − {var dosAcost}−{var byzD dosA missionA}”);

oc4 = factory.createOutcome();

oc4.setHidden(false) ;

oc4.setPlayerStrategy(byzA);

oc4. setUtility (”{var byzD byzA damage} − {var byzAcost}−{var byzD byzA missionA}”);

oc5 = factory.createOutcome();

oc5.setHidden(false) ;

oc5.setPlayerStrategy(noA);

oc5. setUtility (”{var byzD noA damage} − {var noAcost}−{var byzD noA missionA}”);

osreplayA.getOutcome().add(oc1);

osreplayA.getOutcome().add(oc2);

osreplayA.getOutcome().add(oc3);

osreplayA.getOutcome().add(oc4);

osreplayA.getOutcome().add(oc5);

pB.getOpponentStrategy().add(osreplayA);

114



//noD

osreplayA = factory.createOpponentStrategy();

osreplayA.setUID(rID.getRandomIDForSession());

osreplayA.setHidden(false);

osreplayA.setPlayerStrategy(noD);

oc1 = factory.createOutcome();

oc1.setHidden(false) ;

oc1.setPlayerStrategy(replayA);

oc1. setUtility (”{var noD replayA damage} − {var replayAcost}−{var noD replayA missionA}”);

oc2 = factory.createOutcome();

oc2.setHidden(false) ;

oc2.setPlayerStrategy(eavesA);

oc2. setUtility (”{var noD eavesA damage} − {var eavesAcost}−{var noD eavesA missionA}”);

oc3 = factory.createOutcome();

oc3.setHidden(false) ;

oc3.setPlayerStrategy(dosA);

oc3. setUtility (”{var noD dosA damage} − {var dosAcost}−{var noD dosA missionA}”);

oc4 = factory.createOutcome();

oc4.setHidden(false) ;

oc4.setPlayerStrategy(byzA);

oc4. setUtility (”{var noD byzA damage} − {var byzAcost}−{var noD byzA missionA}”);

oc5 = factory.createOutcome();

oc5.setHidden(false) ;

oc5.setPlayerStrategy(noA);

oc5. setUtility (”{var noD noA damage} − {var noAcost}−{var noD noA missionA}”);

osreplayA.getOutcome().add(oc1);

osreplayA.getOutcome().add(oc2);

osreplayA.getOutcome().add(oc3);

osreplayA.getOutcome().add(oc4);

osreplayA.getOutcome().add(oc5);

pB.getOpponentStrategy().add(osreplayA);

//COST VARIABLES−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

// Create variable ’Replay Cost’ and add to game data:

Variable var replayAcost = factory.createVariable() ;

var replayAcost.setUID(rID.getRandomIDForSession());

var replayAcost.setDisplayName(”var replayAcost”);

var replayAcost.setCurrentValue(BigDecimal.valueOf(4.0));

var replayAcost.setMinValue(BigDecimal.valueOf(0.0));

var replayAcost.setMaxValue(BigDecimal.valueOf(10.0));

gameData.getVariable().add(var replayAcost);

Variable var replayDcost = factory.createVariable() ;

var replayDcost.setUID(rID.getRandomIDForSession());
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var replayDcost.setDisplayName(”var replayDcost”);

var replayDcost.setCurrentValue(BigDecimal.valueOf(4.0));

var replayDcost.setMinValue(BigDecimal.valueOf(0.0));

var replayDcost.setMaxValue(BigDecimal.valueOf(10.0));

gameData.getVariable().add(var replayDcost);

// Create variable ’Eavesdropping cost’ and add to game data:

Variable var eavesAcost = factory.createVariable() ;

var eavesAcost.setUID(rID.getRandomIDForSession());

var eavesAcost.setDisplayName(”var eavesAcost”);

var eavesAcost.setCurrentValue(BigDecimal.valueOf(3.0));

var eavesAcost.setMinValue(BigDecimal.valueOf(0.0));

var eavesAcost.setMaxValue(BigDecimal.valueOf(10.0));

gameData.getVariable().add(var eavesAcost);

Variable var eavesDcost = factory.createVariable() ;

var eavesDcost.setUID(rID.getRandomIDForSession());

var eavesDcost.setDisplayName(”var eavesDcost”);

var eavesDcost.setCurrentValue(BigDecimal.valueOf(3.0));

var eavesDcost.setMinValue(BigDecimal.valueOf(0.0));

var eavesDcost.setMaxValue(BigDecimal.valueOf(10.0));

gameData.getVariable().add(var eavesDcost);

// Create variable ’DOS cost’ and add to game data:

Variable var dosAcost = factory.createVariable() ;

var dosAcost.setUID(rID.getRandomIDForSession());

var dosAcost.setDisplayName(”var dosAcost”);

var dosAcost.setCurrentValue(BigDecimal.valueOf(2.0));

var dosAcost.setMinValue(BigDecimal.valueOf(0.0));

var dosAcost.setMaxValue(BigDecimal.valueOf(10.0));

gameData.getVariable().add(var dosAcost);

Variable var dosDcost = factory.createVariable();

var dosDcost.setUID(rID.getRandomIDForSession());

var dosDcost.setDisplayName(”var dosDcost”);

var dosDcost.setCurrentValue(BigDecimal.valueOf(2.0));

var dosDcost.setMinValue(BigDecimal.valueOf(0.0));

var dosDcost.setMaxValue(BigDecimal.valueOf(10.0));

gameData.getVariable().add(var dosDcost);

// Create variable ’Byzantine cost’ and add to game data:

Variable var byzAcost = factory.createVariable();

var byzAcost.setUID(rID.getRandomIDForSession());

var byzAcost.setDisplayName(”var byzAcost”);

var byzAcost.setCurrentValue(BigDecimal.valueOf(5.0));

var byzAcost.setMinValue(BigDecimal.valueOf(0.0));

var byzAcost.setMaxValue(BigDecimal.valueOf(10.0));

gameData.getVariable().add(var byzAcost);

Variable var byzDcost = factory.createVariable();

var byzDcost.setUID(rID.getRandomIDForSession());

var byzDcost.setDisplayName(”var byzDcost”);

var byzDcost.setCurrentValue(BigDecimal.valueOf(5.0));
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var byzDcost.setMinValue(BigDecimal.valueOf(0.0));

var byzDcost.setMaxValue(BigDecimal.valueOf(10.0));

gameData.getVariable().add(var byzDcost);

// Create variable ’No action cost’ and add to game data:

Variable var noAcost = factory.createVariable();

var noAcost.setUID(rID.getRandomIDForSession());

var noAcost.setDisplayName(”var noAcost”);

var noAcost.setCurrentValue(BigDecimal.valueOf(0.0));

var noAcost.setMinValue(BigDecimal.valueOf(0.0));

var noAcost.setMaxValue(BigDecimal.valueOf(10.0));

gameData.getVariable().add(var noAcost);

Variable var noDcost = factory.createVariable();

var noDcost.setUID(rID.getRandomIDForSession());

var noDcost.setDisplayName(”var noDcost”);

var noDcost.setCurrentValue(BigDecimal.valueOf(0.0));

var noDcost.setMinValue(BigDecimal.valueOf(0.0));

var noDcost.setMaxValue(BigDecimal.valueOf(10.0));

gameData.getVariable().add(var noDcost);

//DAMAGE VARAIABLES−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

//Damage against replayD

Variable var replayD replayA damage = factory.createVariable();

var replayD replayA damage.setUID(rID.getRandomIDForSession());

var replayD replayA damage.setDisplayName(”var replayD replayA damage”);

var replayD replayA damage.setCurrentValue(BigDecimal.valueOf(damage[0][0]));

var replayD replayA damage.setMinValue(BigDecimal.valueOf(0.0));

var replayD replayA damage.setMaxValue(BigDecimal.valueOf(12.0));

gameData.getVariable().add(var replayD replayA damage);

Variable var replayD eavesA damage = factory.createVariable();

var replayD eavesA damage.setUID(rID.getRandomIDForSession());

var replayD eavesA damage.setDisplayName(”var replayD eavesA damage”);

var replayD eavesA damage.setCurrentValue(BigDecimal.valueOf(damage[0][1]));

var replayD eavesA damage.setMinValue(BigDecimal.valueOf(0.0));

var replayD eavesA damage.setMaxValue(BigDecimal.valueOf(12.0));

gameData.getVariable().add(var replayD eavesA damage);

Variable var replayD dosA damage = factory.createVariable();

var replayD dosA damage.setUID(rID.getRandomIDForSession());

var replayD dosA damage.setDisplayName(”var replayD dosA damage”);

var replayD dosA damage.setCurrentValue(BigDecimal.valueOf(damage[0][2]));

var replayD dosA damage.setMinValue(BigDecimal.valueOf(0.0));

var replayD dosA damage.setMaxValue(BigDecimal.valueOf(12.0));

gameData.getVariable().add(var replayD dosA damage);

Variable var replayD byzA damage = factory.createVariable();

var replayD byzA damage.setUID(rID.getRandomIDForSession());
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var replayD byzA damage.setDisplayName(”var replayD byzA damage”);

var replayD byzA damage.setCurrentValue(BigDecimal.valueOf(damage[0][3]));

var replayD byzA damage.setMinValue(BigDecimal.valueOf(0.0));

var replayD byzA damage.setMaxValue(BigDecimal.valueOf(12.0));

gameData.getVariable().add(var replayD byzA damage);

Variable var replayD noA damage = factory.createVariable();

var replayD noA damage.setUID(rID.getRandomIDForSession());

var replayD noA damage.setDisplayName(”var replayD noA damage”);

var replayD noA damage.setCurrentValue(BigDecimal.valueOf(damage[0][4]));

var replayD noA damage.setMinValue(BigDecimal.valueOf(0.0));

var replayD noA damage.setMaxValue(BigDecimal.valueOf(12.0));

gameData.getVariable().add(var replayD noA damage);

//Damage against eavesD

Variable var eavesD replayA damage = factory.createVariable();

var eavesD replayA damage.setUID(rID.getRandomIDForSession());

var eavesD replayA damage.setDisplayName(”var eavesD replayA damage”);

var eavesD replayA damage.setCurrentValue(BigDecimal.valueOf(damage[1][0]));

var eavesD replayA damage.setMinValue(BigDecimal.valueOf(0.0));

var eavesD replayA damage.setMaxValue(BigDecimal.valueOf(12.0));

gameData.getVariable().add(var eavesD replayA damage);

Variable var eavesD eavesA damage = factory.createVariable();

var eavesD eavesA damage.setUID(rID.getRandomIDForSession());

var eavesD eavesA damage.setDisplayName(”var eavesD eavesA damage”);

var eavesD eavesA damage.setCurrentValue(BigDecimal.valueOf(damage[1][1]));

var eavesD eavesA damage.setMinValue(BigDecimal.valueOf(0.0));

var eavesD eavesA damage.setMaxValue(BigDecimal.valueOf(12.0));

gameData.getVariable().add(var eavesD eavesA damage);

Variable var eavesD dosA damage = factory.createVariable();

var eavesD dosA damage.setUID(rID.getRandomIDForSession());

var eavesD dosA damage.setDisplayName(”var eavesD dosA damage”);

var eavesD dosA damage.setCurrentValue(BigDecimal.valueOf(damage[1][2]));

var eavesD dosA damage.setMinValue(BigDecimal.valueOf(0.0));

var eavesD dosA damage.setMaxValue(BigDecimal.valueOf(12.0));

gameData.getVariable().add(var eavesD dosA damage);

Variable var eavesD byzA damage = factory.createVariable();

var eavesD byzA damage.setUID(rID.getRandomIDForSession());

var eavesD byzA damage.setDisplayName(”var eavesD byzA damage”);

var eavesD byzA damage.setCurrentValue(BigDecimal.valueOf(damage[1][3]));

var eavesD byzA damage.setMinValue(BigDecimal.valueOf(0.0));

var eavesD byzA damage.setMaxValue(BigDecimal.valueOf(12.0));

gameData.getVariable().add(var eavesD byzA damage);

Variable var eavesD noA damage = factory.createVariable();

var eavesD noA damage.setUID(rID.getRandomIDForSession());

var eavesD noA damage.setDisplayName(”var eavesD noA damage”);

var eavesD noA damage.setCurrentValue(BigDecimal.valueOf(damage[1][4]));

var eavesD noA damage.setMinValue(BigDecimal.valueOf(0.0));

var eavesD noA damage.setMaxValue(BigDecimal.valueOf(12.0));

gameData.getVariable().add(var eavesD noA damage);
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//Damage against dosD

Variable var dosD replayA damage = factory.createVariable();

var dosD replayA damage.setUID(rID.getRandomIDForSession());

var dosD replayA damage.setDisplayName(”var dosD replayA damage”);

var dosD replayA damage.setCurrentValue(BigDecimal.valueOf(damage[2][0]));

var dosD replayA damage.setMinValue(BigDecimal.valueOf(0.0));

var dosD replayA damage.setMaxValue(BigDecimal.valueOf(12.0));

gameData.getVariable().add(var dosD replayA damage);

Variable var dosD eavesA damage = factory.createVariable();

var dosD eavesA damage.setUID(rID.getRandomIDForSession());

var dosD eavesA damage.setDisplayName(”var dosD eavesA damage”);

var dosD eavesA damage.setCurrentValue(BigDecimal.valueOf(damage[2][1]));

var dosD eavesA damage.setMinValue(BigDecimal.valueOf(0.0));

var dosD eavesA damage.setMaxValue(BigDecimal.valueOf(12.0));

gameData.getVariable().add(var dosD eavesA damage);

Variable var dosD dosA damage = factory.createVariable();

var dosD dosA damage.setUID(rID.getRandomIDForSession());

var dosD dosA damage.setDisplayName(”var dosD dosA damage”);

var dosD dosA damage.setCurrentValue(BigDecimal.valueOf(damage[2][2]));

var dosD dosA damage.setMinValue(BigDecimal.valueOf(0.0));

var dosD dosA damage.setMaxValue(BigDecimal.valueOf(12.0));

gameData.getVariable().add(var dosD dosA damage);

Variable var dosD byzA damage = factory.createVariable();

var dosD byzA damage.setUID(rID.getRandomIDForSession());

var dosD byzA damage.setDisplayName(”var dosD byzA damage”);

var dosD byzA damage.setCurrentValue(BigDecimal.valueOf(damage[2][3]));

var dosD byzA damage.setMinValue(BigDecimal.valueOf(0.0));

var dosD byzA damage.setMaxValue(BigDecimal.valueOf(12.0));

gameData.getVariable().add(var dosD byzA damage);

Variable var dosD noA damage = factory.createVariable();

var dosD noA damage.setUID(rID.getRandomIDForSession());

var dosD noA damage.setDisplayName(”var dosD noA damage”);

var dosD noA damage.setCurrentValue(BigDecimal.valueOf(damage[2][4]));

var dosD noA damage.setMinValue(BigDecimal.valueOf(0.0));

var dosD noA damage.setMaxValue(BigDecimal.valueOf(12.0));

gameData.getVariable().add(var dosD noA damage);

//Damage against byzD

Variable var byzD replayA damage = factory.createVariable();

var byzD replayA damage.setUID(rID.getRandomIDForSession());

var byzD replayA damage.setDisplayName(”var byzD replayA damage”);

var byzD replayA damage.setCurrentValue(BigDecimal.valueOf(damage[3][0]));

var byzD replayA damage.setMinValue(BigDecimal.valueOf(0.0));

var byzD replayA damage.setMaxValue(BigDecimal.valueOf(12.0));

gameData.getVariable().add(var byzD replayA damage);

Variable var byzD eavesA damage = factory.createVariable();

119



var byzD eavesA damage.setUID(rID.getRandomIDForSession());

var byzD eavesA damage.setDisplayName(”var byzD eavesA damage”);

var byzD eavesA damage.setCurrentValue(BigDecimal.valueOf(damage[3][1]));

var byzD eavesA damage.setMinValue(BigDecimal.valueOf(0.0));

var byzD eavesA damage.setMaxValue(BigDecimal.valueOf(12.0));

gameData.getVariable().add(var byzD eavesA damage);

Variable var byzD dosA damage = factory.createVariable();

var byzD dosA damage.setUID(rID.getRandomIDForSession());

var byzD dosA damage.setDisplayName(”var byzD dosA damage”);

var byzD dosA damage.setCurrentValue(BigDecimal.valueOf(damage[3][2]));

var byzD dosA damage.setMinValue(BigDecimal.valueOf(0.0));

var byzD dosA damage.setMaxValue(BigDecimal.valueOf(12.0));

gameData.getVariable().add(var byzD dosA damage);

Variable var byzD byzA damage = factory.createVariable();

var byzD byzA damage.setUID(rID.getRandomIDForSession());

var byzD byzA damage.setDisplayName(”var byzD byzA damage”);

var byzD byzA damage.setCurrentValue(BigDecimal.valueOf(damage[3][3]));

var byzD byzA damage.setMinValue(BigDecimal.valueOf(0.0));

var byzD byzA damage.setMaxValue(BigDecimal.valueOf(12.0));

gameData.getVariable().add(var byzD byzA damage);

Variable var byzD noA damage = factory.createVariable();

var byzD noA damage.setUID(rID.getRandomIDForSession());

var byzD noA damage.setDisplayName(”var byzD noA damage”);

var byzD noA damage.setCurrentValue(BigDecimal.valueOf(damage[3][4]));

var byzD noA damage.setMinValue(BigDecimal.valueOf(0.0));

var byzD noA damage.setMaxValue(BigDecimal.valueOf(12.0));

gameData.getVariable().add(var byzD noA damage);

//Damage against noD

Variable var noD replayA damage = factory.createVariable();

var noD replayA damage.setUID(rID.getRandomIDForSession());

var noD replayA damage.setDisplayName(”var noD replayA damage”);

var noD replayA damage.setCurrentValue(BigDecimal.valueOf(damage[4][0]));

var noD replayA damage.setMinValue(BigDecimal.valueOf(0.0));

var noD replayA damage.setMaxValue(BigDecimal.valueOf(12.0));

gameData.getVariable().add(var noD replayA damage);

Variable var noD eavesA damage = factory.createVariable();

var noD eavesA damage.setUID(rID.getRandomIDForSession());

var noD eavesA damage.setDisplayName(”var noD eavesA damage”);

var noD eavesA damage.setCurrentValue(BigDecimal.valueOf(damage[4][1]));

var noD eavesA damage.setMinValue(BigDecimal.valueOf(0.0));

var noD eavesA damage.setMaxValue(BigDecimal.valueOf(12.0));

gameData.getVariable().add(var noD eavesA damage);

Variable var noD dosA damage = factory.createVariable();

var noD dosA damage.setUID(rID.getRandomIDForSession());

var noD dosA damage.setDisplayName(”var noD dosA damage”);

var noD dosA damage.setCurrentValue(BigDecimal.valueOf(damage[4][2]));

var noD dosA damage.setMinValue(BigDecimal.valueOf(0.0));
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var noD dosA damage.setMaxValue(BigDecimal.valueOf(12.0));

gameData.getVariable().add(var noD dosA damage);

Variable var noD byzA damage = factory.createVariable();

var noD byzA damage.setUID(rID.getRandomIDForSession());

var noD byzA damage.setDisplayName(”var noD byzA damage”);

var noD byzA damage.setCurrentValue(BigDecimal.valueOf(damage[4][3]));

var noD byzA damage.setMinValue(BigDecimal.valueOf(0.0));

var noD byzA damage.setMaxValue(BigDecimal.valueOf(12.0));

gameData.getVariable().add(var noD byzA damage);

Variable var noD noA damage = factory.createVariable();

var noD noA damage.setUID(rID.getRandomIDForSession());

var noD noA damage.setDisplayName(”var noD noA damage”);

var noD noA damage.setCurrentValue(BigDecimal.valueOf(damage[4][4]));

var noD noA damage.setMinValue(BigDecimal.valueOf(0.0));

var noD noA damage.setMaxValue(BigDecimal.valueOf(12.0));

gameData.getVariable().add(var noD noA damage);

//MISSION VARIABLES−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

//Mission Accomplished

// Mission Accomplish with replayD

Variable var replayD replayA missionD = factory.createVariable();

var replayD replayA missionD.setUID(rID.getRandomIDForSession());

var replayD replayA missionD.setDisplayName(”var replayD replayA missionD”);

var replayD replayA missionD.setCurrentValue(BigDecimal.valueOf(missionAccomplished[0][0]));

var replayD replayA missionD.setMinValue(BigDecimal.valueOf(0.0));

var replayD replayA missionD.setMaxValue(BigDecimal.valueOf(12.0));

gameData.getVariable().add(var replayD replayA missionD);

Variable var replayD eavesA missionD = factory.createVariable();

var replayD eavesA missionD.setUID(rID.getRandomIDForSession());

var replayD eavesA missionD.setDisplayName(”var replayD eavesA missionD”);

var replayD eavesA missionD.setCurrentValue(BigDecimal.valueOf(missionAccomplished[0][1]));

var replayD eavesA missionD.setMinValue(BigDecimal.valueOf(0.0));

var replayD eavesA missionD.setMaxValue(BigDecimal.valueOf(12.0));

gameData.getVariable().add(var replayD eavesA missionD);

Variable var replayD dosA missionD = factory.createVariable();

var replayD dosA missionD.setUID(rID.getRandomIDForSession());

var replayD dosA missionD.setDisplayName(”var replayD dosA missionD”);

var replayD dosA missionD.setCurrentValue(BigDecimal.valueOf(missionAccomplished[0][2]));

var replayD dosA missionD.setMinValue(BigDecimal.valueOf(0.0));

var replayD dosA missionD.setMaxValue(BigDecimal.valueOf(12.0));

gameData.getVariable().add(var replayD dosA missionD);

Variable var replayD byzA missionD = factory.createVariable();

var replayD byzA missionD.setUID(rID.getRandomIDForSession());

var replayD byzA missionD.setDisplayName(”var replayD byzA missionD”);

var replayD byzA missionD.setCurrentValue(BigDecimal.valueOf(missionAccomplished[0][3]));

var replayD byzA missionD.setMinValue(BigDecimal.valueOf(0.0));

var replayD byzA missionD.setMaxValue(BigDecimal.valueOf(12.0));
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gameData.getVariable().add(var replayD byzA missionD);

Variable var replayD noA missionD = factory.createVariable();

var replayD noA missionD.setUID(rID.getRandomIDForSession());

var replayD noA missionD.setDisplayName(”var replayD noA missionD”);

var replayD noA missionD.setCurrentValue(BigDecimal.valueOf(missionAccomplished[0][4]));

var replayD noA missionD.setMinValue(BigDecimal.valueOf(0.0));

var replayD noA missionD.setMaxValue(BigDecimal.valueOf(12.0));

gameData.getVariable().add(var replayD noA missionD);

//Mission Accomplish with eavesD

Variable var eavesD replayA missionD = factory.createVariable();

var eavesD replayA missionD.setUID(rID.getRandomIDForSession());

var eavesD replayA missionD.setDisplayName(”var eavesD replayA missionD”);

var eavesD replayA missionD.setCurrentValue(BigDecimal.valueOf(missionAccomplished[1][0]));

var eavesD replayA missionD.setMinValue(BigDecimal.valueOf(0.0));

var eavesD replayA missionD.setMaxValue(BigDecimal.valueOf(12.0));

gameData.getVariable().add(var eavesD replayA missionD);

Variable var eavesD eavesA missionD = factory.createVariable();

var eavesD eavesA missionD.setUID(rID.getRandomIDForSession());

var eavesD eavesA missionD.setDisplayName(”var eavesD eavesA missionD”);

var eavesD eavesA missionD.setCurrentValue(BigDecimal.valueOf(missionAccomplished[1][1]));

var eavesD eavesA missionD.setMinValue(BigDecimal.valueOf(0.0));

var eavesD eavesA missionD.setMaxValue(BigDecimal.valueOf(12.0));

gameData.getVariable().add(var eavesD eavesA missionD);

Variable var eavesD dosA missionD = factory.createVariable();

var eavesD dosA missionD.setUID(rID.getRandomIDForSession());

var eavesD dosA missionD.setDisplayName(”var eavesD dosA missionD”);

var eavesD dosA missionD.setCurrentValue(BigDecimal.valueOf(missionAccomplished[1][2]));

var eavesD dosA missionD.setMinValue(BigDecimal.valueOf(0.0));

var eavesD dosA missionD.setMaxValue(BigDecimal.valueOf(12.0));

gameData.getVariable().add(var eavesD dosA missionD);

Variable var eavesD byzA missionD = factory.createVariable();

var eavesD byzA missionD.setUID(rID.getRandomIDForSession());

var eavesD byzA missionD.setDisplayName(”var eavesD byzA missionD”);

var eavesD byzA missionD.setCurrentValue(BigDecimal.valueOf(missionAccomplished[1][3]));

var eavesD byzA missionD.setMinValue(BigDecimal.valueOf(0.0));

var eavesD byzA missionD.setMaxValue(BigDecimal.valueOf(12.0));

gameData.getVariable().add(var eavesD byzA missionD);

Variable var eavesD noA missionD = factory.createVariable();

var eavesD noA missionD.setUID(rID.getRandomIDForSession());

var eavesD noA missionD.setDisplayName(”var eavesD noA missionD”);

var eavesD noA missionD.setCurrentValue(BigDecimal.valueOf(missionAccomplished[1][4]));

var eavesD noA missionD.setMinValue(BigDecimal.valueOf(0.0));

var eavesD noA missionD.setMaxValue(BigDecimal.valueOf(12.0));

gameData.getVariable().add(var eavesD noA missionD);

//Mission Accomplish with dosD

Variable var dosD replayA missionD = factory.createVariable();
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var dosD replayA missionD.setUID(rID.getRandomIDForSession());

var dosD replayA missionD.setDisplayName(”var dosD replayA missionD”);

var dosD replayA missionD.setCurrentValue(BigDecimal.valueOf(missionAccomplished[2][0]));

var dosD replayA missionD.setMinValue(BigDecimal.valueOf(0.0));

var dosD replayA missionD.setMaxValue(BigDecimal.valueOf(12.0));

gameData.getVariable().add(var dosD replayA missionD);

Variable var dosD eavesA missionD = factory.createVariable();

var dosD eavesA missionD.setUID(rID.getRandomIDForSession());

var dosD eavesA missionD.setDisplayName(”var dosD eavesA missionD”);

var dosD eavesA missionD.setCurrentValue(BigDecimal.valueOf(missionAccomplished[2][1]));

var dosD eavesA missionD.setMinValue(BigDecimal.valueOf(0.0));

var dosD eavesA missionD.setMaxValue(BigDecimal.valueOf(12.0));

gameData.getVariable().add(var dosD eavesA missionD);

Variable var dosD dosA missionD = factory.createVariable();

var dosD dosA missionD.setUID(rID.getRandomIDForSession());

var dosD dosA missionD.setDisplayName(”var dosD dosA missionD”);

var dosD dosA missionD.setCurrentValue(BigDecimal.valueOf(missionAccomplished[2][2]));

var dosD dosA missionD.setMinValue(BigDecimal.valueOf(0.0));

var dosD dosA missionD.setMaxValue(BigDecimal.valueOf(12.0));

gameData.getVariable().add(var dosD dosA missionD);

Variable var dosD byzA missionD = factory.createVariable();

var dosD byzA missionD.setUID(rID.getRandomIDForSession());

var dosD byzA missionD.setDisplayName(”var dosD byzA missionD”);

var dosD byzA missionD.setCurrentValue(BigDecimal.valueOf(missionAccomplished[2][3]));

var dosD byzA missionD.setMinValue(BigDecimal.valueOf(0.0));

var dosD byzA missionD.setMaxValue(BigDecimal.valueOf(12.0));

gameData.getVariable().add(var dosD byzA missionD);

Variable var dosD noA missionD = factory.createVariable();

var dosD noA missionD.setUID(rID.getRandomIDForSession());

var dosD noA missionD.setDisplayName(”var dosD noA missionD”);

var dosD noA missionD.setCurrentValue(BigDecimal.valueOf(missionAccomplished[2][4]));

var dosD noA missionD.setMinValue(BigDecimal.valueOf(0.0));

var dosD noA missionD.setMaxValue(BigDecimal.valueOf(12.0));

gameData.getVariable().add(var dosD noA missionD);

//Mission Accomplish with byzD

Variable var byzD replayA missionD = factory.createVariable();

var byzD replayA missionD.setUID(rID.getRandomIDForSession());

var byzD replayA missionD.setDisplayName(”var byzD replayA missionD”);

var byzD replayA missionD.setCurrentValue(BigDecimal.valueOf(missionAccomplished[3][0]));

var byzD replayA missionD.setMinValue(BigDecimal.valueOf(0.0));

var byzD replayA missionD.setMaxValue(BigDecimal.valueOf(12.0));

gameData.getVariable().add(var byzD replayA missionD);

Variable var byzD eavesA missionD = factory.createVariable();

var byzD eavesA missionD.setUID(rID.getRandomIDForSession());

var byzD eavesA missionD.setDisplayName(”var byzD eavesA missionD”);

var byzD eavesA missionD.setCurrentValue(BigDecimal.valueOf(missionAccomplished[3][1]));

var byzD eavesA missionD.setMinValue(BigDecimal.valueOf(0.0));
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var byzD eavesA missionD.setMaxValue(BigDecimal.valueOf(12.0));

gameData.getVariable().add(var byzD eavesA missionD);

Variable var byzD dosA missionD = factory.createVariable();

var byzD dosA missionD.setUID(rID.getRandomIDForSession());

var byzD dosA missionD.setDisplayName(”var byzD dosA missionD”);

var byzD dosA missionD.setCurrentValue(BigDecimal.valueOf(missionAccomplished[3][2]));

var byzD dosA missionD.setMinValue(BigDecimal.valueOf(0.0));

var byzD dosA missionD.setMaxValue(BigDecimal.valueOf(12.0));

gameData.getVariable().add(var byzD dosA missionD);

Variable var byzD byzA missionD = factory.createVariable();

var byzD byzA missionD.setUID(rID.getRandomIDForSession());

var byzD byzA missionD.setDisplayName(”var byzD byzA missionD”);

var byzD byzA missionD.setCurrentValue(BigDecimal.valueOf(missionAccomplished[3][3]));

var byzD byzA missionD.setMinValue(BigDecimal.valueOf(0.0));

var byzD byzA missionD.setMaxValue(BigDecimal.valueOf(12.0));

gameData.getVariable().add(var byzD byzA missionD);

Variable var byzD noA missionD = factory.createVariable();

var byzD noA missionD.setUID(rID.getRandomIDForSession());

var byzD noA missionD.setDisplayName(”var byzD noA missionD”);

var byzD noA missionD.setCurrentValue(BigDecimal.valueOf(missionAccomplished[3][4]));

var byzD noA missionD.setMinValue(BigDecimal.valueOf(0.0));

var byzD noA missionD.setMaxValue(BigDecimal.valueOf(12.0));

gameData.getVariable().add(var byzD noA missionD);

//Mission Accomplish with noD

Variable var noD replayA missionD = factory.createVariable();

var noD replayA missionD.setUID(rID.getRandomIDForSession());

var noD replayA missionD.setDisplayName(”var noD replayA missionD”);

var noD replayA missionD.setCurrentValue(BigDecimal.valueOf(missionAccomplished[4][0]));

var noD replayA missionD.setMinValue(BigDecimal.valueOf(0.0));

var noD replayA missionD.setMaxValue(BigDecimal.valueOf(12.0));

gameData.getVariable().add(var noD replayA missionD);

Variable var noD eavesA missionD = factory.createVariable();

var noD eavesA missionD.setUID(rID.getRandomIDForSession());

var noD eavesA missionD.setDisplayName(”var noD eavesA missionD”);

var noD eavesA missionD.setCurrentValue(BigDecimal.valueOf(missionAccomplished[4][1]));

var noD eavesA missionD.setMinValue(BigDecimal.valueOf(0.0));

var noD eavesA missionD.setMaxValue(BigDecimal.valueOf(12.0));

gameData.getVariable().add(var noD eavesA missionD);

Variable var noD dosA missionD = factory.createVariable();

var noD dosA missionD.setUID(rID.getRandomIDForSession());

var noD dosA missionD.setDisplayName(”var noD dosA missionD”);

var noD dosA missionD.setCurrentValue(BigDecimal.valueOf(missionAccomplished[4][2]));

var noD dosA missionD.setMinValue(BigDecimal.valueOf(0.0));

var noD dosA missionD.setMaxValue(BigDecimal.valueOf(12.0));

gameData.getVariable().add(var noD dosA missionD);

Variable var noD byzA missionD = factory.createVariable();
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var noD byzA missionD.setUID(rID.getRandomIDForSession());

var noD byzA missionD.setDisplayName(”var noD byzA missionD”);

var noD byzA missionD.setCurrentValue(BigDecimal.valueOf(missionAccomplished[4][3]));

var noD byzA missionD.setMinValue(BigDecimal.valueOf(0.0));

var noD byzA missionD.setMaxValue(BigDecimal.valueOf(12.0));

gameData.getVariable().add(var noD byzA missionD);

Variable var noD noA missionD = factory.createVariable();

var noD noA missionD.setUID(rID.getRandomIDForSession());

var noD noA missionD.setDisplayName(”var noD noA missionD”);

var noD noA missionD.setCurrentValue(BigDecimal.valueOf(missionAccomplished[4][4]));

var noD noA missionD.setMinValue(BigDecimal.valueOf(0.0));

var noD noA missionD.setMaxValue(BigDecimal.valueOf(12.0));

gameData.getVariable().add(var noD noA missionD);

//Mission Failed

// Mission Failed with replayD

Variable var replayD replayA missionA = factory.createVariable();

var replayD replayA missionA.setUID(rID.getRandomIDForSession());

var replayD replayA missionA.setDisplayName(”var replayD replayA missionA”);

var replayD replayA missionA.setCurrentValue(BigDecimal.valueOf(missionFailed[0][0]));

var replayD replayA missionA.setMinValue(BigDecimal.valueOf(0.0));

var replayD replayA missionA.setMaxValue(BigDecimal.valueOf(12.0));

gameData.getVariable().add(var replayD replayA missionA);

Variable var replayD eavesA missionA = factory.createVariable();

var replayD eavesA missionA.setUID(rID.getRandomIDForSession());

var replayD eavesA missionA.setDisplayName(”var replayD eavesA missionA”);

var replayD eavesA missionA.setCurrentValue(BigDecimal.valueOf(missionFailed[0][1]));

var replayD eavesA missionA.setMinValue(BigDecimal.valueOf(0.0));

var replayD eavesA missionA.setMaxValue(BigDecimal.valueOf(12.0));

gameData.getVariable().add(var replayD eavesA missionA);

Variable var replayD dosA missionA = factory.createVariable();

var replayD dosA missionA.setUID(rID.getRandomIDForSession());

var replayD dosA missionA.setDisplayName(”var replayD dosA missionA”);

var replayD dosA missionA.setCurrentValue(BigDecimal.valueOf(missionFailed[0][2]));

var replayD dosA missionA.setMinValue(BigDecimal.valueOf(0.0));

var replayD dosA missionA.setMaxValue(BigDecimal.valueOf(12.0));

gameData.getVariable().add(var replayD dosA missionA);

Variable var replayD byzA missionA = factory.createVariable();

var replayD byzA missionA.setUID(rID.getRandomIDForSession());

var replayD byzA missionA.setDisplayName(”var replayD byzA missionA”);

var replayD byzA missionA.setCurrentValue(BigDecimal.valueOf(missionFailed[0][3]));

var replayD byzA missionA.setMinValue(BigDecimal.valueOf(0.0));

var replayD byzA missionA.setMaxValue(BigDecimal.valueOf(12.0));

gameData.getVariable().add(var replayD byzA missionA);

Variable var replayD noA missionA = factory.createVariable();

var replayD noA missionA.setUID(rID.getRandomIDForSession());

var replayD noA missionA.setDisplayName(”var replayD noA missionA”);
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var replayD noA missionA.setCurrentValue(BigDecimal.valueOf(missionFailed[0][4]));

var replayD noA missionA.setMinValue(BigDecimal.valueOf(0.0));

var replayD noA missionA.setMaxValue(BigDecimal.valueOf(12.0));

gameData.getVariable().add(var replayD noA missionA);

//Mission Failed with eavesD

Variable var eavesD replayA missionA = factory.createVariable();

var eavesD replayA missionA.setUID(rID.getRandomIDForSession());

var eavesD replayA missionA.setDisplayName(”var eavesD replayA missionA”);

var eavesD replayA missionA.setCurrentValue(BigDecimal.valueOf(missionFailed[1][0]));

var eavesD replayA missionA.setMinValue(BigDecimal.valueOf(0.0));

var eavesD replayA missionA.setMaxValue(BigDecimal.valueOf(12.0));

gameData.getVariable().add(var eavesD replayA missionA);

Variable var eavesD eavesA missionA = factory.createVariable();

var eavesD eavesA missionA.setUID(rID.getRandomIDForSession());

var eavesD eavesA missionA.setDisplayName(”var eavesD eavesA missionA”);

var eavesD eavesA missionA.setCurrentValue(BigDecimal.valueOf(missionFailed[1][1]));

var eavesD eavesA missionA.setMinValue(BigDecimal.valueOf(0.0));

var eavesD eavesA missionA.setMaxValue(BigDecimal.valueOf(12.0));

gameData.getVariable().add(var eavesD eavesA missionA);

Variable var eavesD dosA missionA = factory.createVariable();

var eavesD dosA missionA.setUID(rID.getRandomIDForSession());

var eavesD dosA missionA.setDisplayName(”var eavesD dosA missionA”);

var eavesD dosA missionA.setCurrentValue(BigDecimal.valueOf(missionFailed[1][2]));

var eavesD dosA missionA.setMinValue(BigDecimal.valueOf(0.0));

var eavesD dosA missionA.setMaxValue(BigDecimal.valueOf(12.0));

gameData.getVariable().add(var eavesD dosA missionA);

Variable var eavesD byzA missionA = factory.createVariable();

var eavesD byzA missionA.setUID(rID.getRandomIDForSession());

var eavesD byzA missionA.setDisplayName(”var eavesD byzA missionA”);

var eavesD byzA missionA.setCurrentValue(BigDecimal.valueOf(missionFailed[1][3]));

var eavesD byzA missionA.setMinValue(BigDecimal.valueOf(0.0));

var eavesD byzA missionA.setMaxValue(BigDecimal.valueOf(12.0));

gameData.getVariable().add(var eavesD byzA missionA);

Variable var eavesD noA missionA = factory.createVariable();

var eavesD noA missionA.setUID(rID.getRandomIDForSession());

var eavesD noA missionA.setDisplayName(”var eavesD noA missionA”);

var eavesD noA missionA.setCurrentValue(BigDecimal.valueOf(missionFailed[1][4]));

var eavesD noA missionA.setMinValue(BigDecimal.valueOf(0.0));

var eavesD noA missionA.setMaxValue(BigDecimal.valueOf(12.0));

gameData.getVariable().add(var eavesD noA missionA);

//Mission Failed with dosD

Variable var dosD replayA missionA = factory.createVariable();

var dosD replayA missionA.setUID(rID.getRandomIDForSession());

var dosD replayA missionA.setDisplayName(”var dosD replayA missionA”);

var dosD replayA missionA.setCurrentValue(BigDecimal.valueOf(missionFailed[2][0]));

var dosD replayA missionA.setMinValue(BigDecimal.valueOf(0.0));

var dosD replayA missionA.setMaxValue(BigDecimal.valueOf(12.0));
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gameData.getVariable().add(var dosD replayA missionA);

Variable var dosD eavesA missionA = factory.createVariable();

var dosD eavesA missionA.setUID(rID.getRandomIDForSession());

var dosD eavesA missionA.setDisplayName(”var dosD eavesA missionA”);

var dosD eavesA missionA.setCurrentValue(BigDecimal.valueOf(missionFailed[2][1]));

var dosD eavesA missionA.setMinValue(BigDecimal.valueOf(0.0));

var dosD eavesA missionA.setMaxValue(BigDecimal.valueOf(12.0));

gameData.getVariable().add(var dosD eavesA missionA);

Variable var dosD dosA missionA = factory.createVariable();

var dosD dosA missionA.setUID(rID.getRandomIDForSession());

var dosD dosA missionA.setDisplayName(”var dosD dosA missionA”);

var dosD dosA missionA.setCurrentValue(BigDecimal.valueOf(missionFailed[2][2]));

var dosD dosA missionA.setMinValue(BigDecimal.valueOf(0.0));

var dosD dosA missionA.setMaxValue(BigDecimal.valueOf(12.0));

gameData.getVariable().add(var dosD dosA missionA);

Variable var dosD byzA missionA = factory.createVariable();

var dosD byzA missionA.setUID(rID.getRandomIDForSession());

var dosD byzA missionA.setDisplayName(”var dosD byzA missionA”);

var dosD byzA missionA.setCurrentValue(BigDecimal.valueOf(missionFailed[2][3]));

var dosD byzA missionA.setMinValue(BigDecimal.valueOf(0.0));

var dosD byzA missionA.setMaxValue(BigDecimal.valueOf(12.0));

gameData.getVariable().add(var dosD byzA missionA);

Variable var dosD noA missionA = factory.createVariable();

var dosD noA missionA.setUID(rID.getRandomIDForSession());

var dosD noA missionA.setDisplayName(”var dosD noA missionA”);

var dosD noA missionA.setCurrentValue(BigDecimal.valueOf(missionFailed[2][4]));

var dosD noA missionA.setMinValue(BigDecimal.valueOf(0.0));

var dosD noA missionA.setMaxValue(BigDecimal.valueOf(12.0));

gameData.getVariable().add(var dosD noA missionA);

//Mission Failed with byzD

Variable var byzD replayA missionA = factory.createVariable();

var byzD replayA missionA.setUID(rID.getRandomIDForSession());

var byzD replayA missionA.setDisplayName(”var byzD replayA missionA”);

var byzD replayA missionA.setCurrentValue(BigDecimal.valueOf(missionFailed[3][0]));

var byzD replayA missionA.setMinValue(BigDecimal.valueOf(0.0));

var byzD replayA missionA.setMaxValue(BigDecimal.valueOf(12.0));

gameData.getVariable().add(var byzD replayA missionA);

Variable var byzD eavesA missionA = factory.createVariable();

var byzD eavesA missionA.setUID(rID.getRandomIDForSession());

var byzD eavesA missionA.setDisplayName(”var byzD eavesA missionA”);

var byzD eavesA missionA.setCurrentValue(BigDecimal.valueOf(missionFailed[3][1]));

var byzD eavesA missionA.setMinValue(BigDecimal.valueOf(0.0));

var byzD eavesA missionA.setMaxValue(BigDecimal.valueOf(12.0));

gameData.getVariable().add(var byzD eavesA missionA);

Variable var byzD dosA missionA = factory.createVariable();

var byzD dosA missionA.setUID(rID.getRandomIDForSession());
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var byzD dosA missionA.setDisplayName(”var byzD dosA missionA”);

var byzD dosA missionA.setCurrentValue(BigDecimal.valueOf(missionFailed[3][2]));

var byzD dosA missionA.setMinValue(BigDecimal.valueOf(0.0));

var byzD dosA missionA.setMaxValue(BigDecimal.valueOf(12.0));

gameData.getVariable().add(var byzD dosA missionA);

Variable var byzD byzA missionA = factory.createVariable();

var byzD byzA missionA.setUID(rID.getRandomIDForSession());

var byzD byzA missionA.setDisplayName(”var byzD byzA missionA”);

var byzD byzA missionA.setCurrentValue(BigDecimal.valueOf(missionFailed[3][3]));

var byzD byzA missionA.setMinValue(BigDecimal.valueOf(0.0));

var byzD byzA missionA.setMaxValue(BigDecimal.valueOf(12.0));

gameData.getVariable().add(var byzD byzA missionA);

Variable var byzD noA missionA = factory.createVariable();

var byzD noA missionA.setUID(rID.getRandomIDForSession());

var byzD noA missionA.setDisplayName(”var byzD noA missionA”);

var byzD noA missionA.setCurrentValue(BigDecimal.valueOf(missionFailed[3][4]));

var byzD noA missionA.setMinValue(BigDecimal.valueOf(0.0));

var byzD noA missionA.setMaxValue(BigDecimal.valueOf(12.0));

gameData.getVariable().add(var byzD noA missionA);

//Mission Failed with noD

Variable var noD replayA missionA = factory.createVariable();

var noD replayA missionA.setUID(rID.getRandomIDForSession());

var noD replayA missionA.setDisplayName(”var noD replayA missionA”);

var noD replayA missionA.setCurrentValue(BigDecimal.valueOf(missionFailed[4][0]));

var noD replayA missionA.setMinValue(BigDecimal.valueOf(0.0));

var noD replayA missionA.setMaxValue(BigDecimal.valueOf(12.0));

gameData.getVariable().add(var noD replayA missionA);

Variable var noD eavesA missionA = factory.createVariable();

var noD eavesA missionA.setUID(rID.getRandomIDForSession());

var noD eavesA missionA.setDisplayName(”var noD eavesA missionA”);

var noD eavesA missionA.setCurrentValue(BigDecimal.valueOf(missionFailed[4][1]));

var noD eavesA missionA.setMinValue(BigDecimal.valueOf(0.0));

var noD eavesA missionA.setMaxValue(BigDecimal.valueOf(12.0));

gameData.getVariable().add(var noD eavesA missionA);

Variable var noD dosA missionA = factory.createVariable();

var noD dosA missionA.setUID(rID.getRandomIDForSession());

var noD dosA missionA.setDisplayName(”var noD dosA missionA”);

var noD dosA missionA.setCurrentValue(BigDecimal.valueOf(missionFailed[4][2]));

var noD dosA missionA.setMinValue(BigDecimal.valueOf(0.0));

var noD dosA missionA.setMaxValue(BigDecimal.valueOf(12.0));

gameData.getVariable().add(var noD dosA missionA);

Variable var noD byzA missionA = factory.createVariable();

var noD byzA missionA.setUID(rID.getRandomIDForSession());

var noD byzA missionA.setDisplayName(”var noD byzA missionA”);

var noD byzA missionA.setCurrentValue(BigDecimal.valueOf(missionFailed[4][3]));

var noD byzA missionA.setMinValue(BigDecimal.valueOf(0.0));

var noD byzA missionA.setMaxValue(BigDecimal.valueOf(12.0));
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gameData.getVariable().add(var noD byzA missionA);

Variable var noD noA missionA = factory.createVariable();

var noD noA missionA.setUID(rID.getRandomIDForSession());

var noD noA missionA.setDisplayName(”var noD noA missionA”);

var noD noA missionA.setCurrentValue(BigDecimal.valueOf(missionFailed[4][4]));

var noD noA missionA.setMinValue(BigDecimal.valueOf(0.0));

var noD noA missionA.setMaxValue(BigDecimal.valueOf(12.0));

gameData.getVariable().add(var noD noA missionA);

return gameData;

}

}
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Appendix C. MIP Implementation

/∗This code finds the nash equilibrium utilizing MIP. The cplex library is utilized

∗ to find the optimal solutions . The code actually finds the best solution .

∗ To change this license header, choose License Headers in Project Properties.

∗ To change this template file , choose Tools | Templates

∗ and open the template in the editor.

∗/

package com.nicholaskovach.jhalf.components.equilibriums.nash;

import com.nicholaskovach.jhalf.components.interfaces.Hypergame;

import com.nicholaskovach.jhalf.components.interfaces.jaxb.Player;

import com.nicholaskovach.jhalf.components.interfaces.jaxb.PlayerStrategy;

import ilog.concert .∗;

import ilog.cplex .∗;

/∗∗

∗

∗ @author youkn

∗/

public class MIP {

public static double [][] findEquilibriumsMIP(Hypergame hypergame){

Player rowPlayer = hypergame.getRowPlayer();

Player colPlayer = hypergame.getColumnPlayer();

int m = rowPlayer.getPlayerStrategy().size();

int n = colPlayer.getPlayerStrategy(). size () ;

double [][] utilitiesA = new double[m][n];

double [][] utilitiesB = new double[n][m];

double max = −Double.MAX VALUE;

double min = Double.MAX VALUE;

int i = 0;

for (PlayerStrategy rowStrategy : rowPlayer.getPlayerStrategy()) {

int j = 0;

for (PlayerStrategy colStrategy : colPlayer.getPlayerStrategy()) {

utilitiesA [ i ][ j ] = hypergame.getPlayerEvaluatedUtility(rowPlayer, rowStrategy, colStrategy);

if ( utilitiesA [ i ][ j]>max){

max = utilitiesA[i ][ j ];

}

if ( utilitiesA [ i ][ j]<min){

min = utilitiesA[ i ][ j ];

}

j++;

}

i++;
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}

double Ua = max − min;

max = −Double.MAX VALUE;

min = Double.MAX VALUE;

i = 0;

for (PlayerStrategy colStrategy : colPlayer.getPlayerStrategy()) {

int j = 0;

for (PlayerStrategy rowStrategy : rowPlayer.getPlayerStrategy()) {

utilitiesB [ i ][ j ] = hypergame.getPlayerEvaluatedUtility(colPlayer, colStrategy, rowStrategy);

if ( utilitiesB [ i ][ j]>max){

max = utilitiesB[i ][ j ];

}

if ( utilitiesB [ i ][ j]<min){

min = utilitiesB[ i ][ j ];

}

j++;

}

i++;

}

double Ub = max − min;

try{

IloCplex cplex = new IloCplex();

//variables

IloNumVar[] pA = cplex.numVarArray(utilitiesA.length, 0, 1);

IloNumVar ua = cplex.numVar(−Double.MAX VALUE,Double.MAX VALUE, ”ua”);

IloNumVar[] usa = cplex.numVarArray(utilitiesA.length, −Double.MAX VALUE, Double.MAX VALUE);

IloNumVar[] rsa = cplex.numVarArray(utilitiesA.length, −Double.MAX VALUE, Double.MAX VALUE);

IloIntVar [] bsa = cplex.boolVarArray(utilitiesA.length);

IloNumVar[] pB = cplex.numVarArray(utilitiesB.length, 0, 1);

IloNumVar ub = cplex.numVar(−Double.MAX VALUE,Double.MAX VALUE, ”ua”);

IloNumVar[] usb = cplex.numVarArray(utilitiesB.length, −Double.MAX VALUE, Double.MAX VALUE);

IloNumVar[] rsb = cplex.numVarArray(utilitiesB.length, −Double.MAX VALUE, Double.MAX VALUE);

IloIntVar [] bsb = cplex.boolVarArray(utilitiesB.length);

//add objective

//cplex.addMaximize(cplex.sum(bsb));//(minimize support)

//cplex.addMinimize(cplex.sum(bsb));//(maximize support)

//define constraints

cplex.addEq(cplex.sum(pA),1);

cplex.addEq(cplex.sum(pB),1);
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for(int g = 0;g<utilitiesA.length;g++){

cplex.addEq(cplex.scalProd(utilitiesA[g ], pB), usa[g]) ;

cplex.addGe(ua,usa[g]);

cplex.addEq(rsa[g],cplex. diff (ua,usa[g])) ;

cplex.addLe(pA[g],cplex.diff (1,bsa[g])) ;

cplex.addLe(rsa[g], cplex.prod(Ua, bsa[g])) ;

}

for(int g = 0;g<utilitiesB.length;g++){

cplex.addEq(cplex.scalProd(utilitiesB[g ], pA), usb[g]) ;

cplex.addGe(ub,usb[g]);

cplex.addEq(rsb[g],cplex. diff (ub,usb[g])) ;

cplex.addLe(pB[g],cplex.diff (1,bsb[g])) ;

cplex.addLe(rsb[g], cplex.prod(Ub, bsb[g]));

}

//

if (cplex.populate()){

/∗To find different equilibriums change the h value in both place of the loop to a fixed number

For example the following code

for(int k = 0;k<m;k++){

equilibriums[h][k] = cplex.getValue(pA[k], 1);

}

for(int k = m;k<(m+n);k++){

equilibriums[h][k] = cplex.getValue(pB[k−m], 1);

}

will find the second equilibrium in the pool, because ”0” is the first . The second equilibrium will appear in all the

the arrays as it is a fixed value and that is the equilibrium that will be in HAT.

To instead find all the equilibriums set it back to h, but this will only show the first equilibrium

in HAT.

∗/

int totaleq = cplex.getSolnPoolNsolns();

double [][] equilibriums = new double[totaleq][m+n];

for(int h=0;h<equilibriums.length;h++){

for(int k = 0;k<m;k++){

equilibriums[h][k] = cplex.getValue(pA[k], h);//7

}

for(int k = m;k<(m+n);k++){

132



equilibriums[h][k] = cplex.getValue(pB[k−m], h);//7

}

}

return equilibriums;

}

else{

System.out.println(”Model not solved”);

}

}catch(IloException exc){

}

double [][] noSol = new double[1][1];

return noSol;

}

}
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